Medical Cost and Prognostic Impact of FFR-guided PCI

Seung Hun Lee, MD, PhD¹
David Hong, MD², Joo Myung Lee, MD, MPH, PhD²;
on the behalf of FRAME-AMI Investigators

¹Chonnam National University Hospital, South Korea; ²Samsung Medical Center, South Korea

Disclosure

Relationships with commercial interests:

- Grants/Research Support: Abbott Korea, Abbott Vascular, Korean
 Cardiac Research Foundation
- Speakers Bureau/Honoraria: Abbott Vascular, Boston Scientific, Medtronic, MicroPort
- Consulting Fees: Dotter
- Other: None

Clinical Benefit of Physiology-Guided PCI

Safety of deferral of PCI based on negative FFR

ICIAPZUZ4

FAMEAngio- vs. FFR-guided PCI in MVD

No. Stents: 2.7 vs. 1.9, P<0.001

Long-term safety of FFR-guided PCI with lower cost

FAME2Medical Tx. vs. PCI in FFR≤0.80

PCI was beneficial with lesions with positive FFR

Current Status of Coronary Physiology to Guide PCI

2018 ESC Guideline for Myocardial Revascularization

Recommendations	Class ^a	Level ^b
When evidence of ischaemia is not available, FFR or iwFR are recommended to assess the haemodynamic relevance of intermediate-grade stenosis. 15,17,18,39	-	A

2021 ACC/AHA/SCAI Coronary Revascularization Guideline

COR	LOE	RECOMMENDATIONS
1	А	 In patients with angina or an anginal equivalent, undocumented ischemia, and angiographically intermediate stenoses, the use of fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) is recommended to guide the decision to proceed with PCI (1-6).
3: No benefit	B-R	2. In stable patients with angiographically intermediate stenoses and FFR >0.80 or iFR >0.89, PCI should not be performed (7-10).

Both guidelines have recommended the FFR-guided decision making as Class IA.

What about real-world data and adoption rate?

FFR-guided PCI improve patient survival in nationwide cohort studies

All-Cause Mortality FFR-Guided PCI versus Angiography-Only PCI

Veterans Affairs registry 2009-2017 (Stable IHD N=17,989, 1 Year)

SCAAR registry 2005-2016 (Stable IHD N=23,860, Median 4.7 Years)

Korean NHIS-HIRA 2013-2018 (Total N=134,613, 4 Years)

Low Adoption Rate of FFR in Contemporary Practice

Experts emphasized the role of FFR.
Guidelines endorsed Class IA.
RWDs showed reductions in mortality.

Multifactorial reasons for limited adoption rates.

Whether FFR can reduce

- 1. Cost-Effectiveness
- 2. Additional procedural time
- 3. Knowledge Barrier
- 4. Physician attitude remains questionable...

Cost-Effectiveness of FFR-Guided PCI

Patients with FFR<0.80 from FAME2

3-Year Cumulative Medical Costs

Mean initial costs were higher in the PCI group, but by 3 years were similar between the 2 groups.

Decision Tree Model of SIHD undergoing ICA from Multicenter-Registry

3-Month Cumulative Medical Costs

	Angiography-guided group	FFR-guided group	Difference
Test cost			
Angiography	54,000	54,000	0
FFR	0	185,660	185,660
Treatment cost			
CABG	99,792	90,455	-9337
PCI	995,497	522,485	-473,012
Medical treatment	189,983	362,066	172,083
Total medical cost	1,339,272	1,214,666	-124,606

Real-world Data of FFR-guided PCI in Korea

Health Insurance Review and Assessment Service Data

134,613 Patients with Stable and Unstable Angina (2011~2017)

Although the annual number and proportion of FFR-guided PCI significantly increased, only 3.8% were FFR-guided PCI in Korea.

Real-world Data of FFR-guided PCI in Korea

Health Insurance Review and Assessment Service Data

134,613 Patients with Stable and Unstable Angina (2011~2017)

- FFR-guided PCI showed significantly lower risk of all-cause death or spontaneous MI at 4 years.
- Although FFR group showed higher medical cost during index admission, cumulative medical cost after index admission was significantly lower in the FFR group.

Cost-Effectiveness Analysis with Nationwide Data

1. Patient-Level Analysis (Korea)

2. Markov Model-Based Analysis (Korea, US, UK)

National Health Insurance Claim Data (Health Insurance Review and Assessment Service)

Patients with Stable or Unstable Angina
Undergoing PCI 2011-2017
N=134,613

Angiography-guided PCI N=129,497

FFR-guided PCI N=5,116

Outcomes

- Cost
- Quality-adjusted life year (QALY): ∑ (Utility of each status × Time in each status)
- Incremental cost-effectiveness ratio (ICER) = \triangle QALY / \triangle Cost

Cost-Effectiveness Analysis with Nationwide Data

Patient-Level: Cost-Effectiveness Analysis at 4-Year (Korea)

Base-Case Analysis	Cost, \$			QALYs	Cost-Effectiveness	
	Total	Incremental	Total	Incremental	ICER(US\$/QALY)	
Angio-PCI	10,503	Reference	3.037	Reference	-7,748	
FFR-PCI	10,200	-303	3.076	0.039	-7,740	

FFR-based PCI was shown to achieve better quality of life at lower cost compared to angiography-based PCI.

Cost-Effectiveness Analysis with Nationwide Data

Model-Based: Probabilistic Sensitivity Analysis (PSA)

Bootstrap Technique with 25,000 Replications

Given the GDP per capita in each country, cost-effectiveness for FFR-based PCI were 93.5%, 92.3% and 90.8% for Korea, US and UK in PSA analysis, respectively.

FFR-guided vs. Angio-guided PCI for Non-IRA Lesions

FLOWER-MI Trial

Prospective, Multi-center, Open-Label Randomized Trial 1171 MV-STEMI Patients from 41 French Centers

Primary Endpoint: all-cause death, nonfatal MI (+ preiprocedural MI), revascularization

FFR 5.5% vs. Angiography 4.2% at <u>1 Year</u> <u>96.2% staged PCI</u>

FRAME-AMI Trial

Prospective, Multi-center, Open-Label Randomized Trial 562 MV-AMI Patients from 14 Korean Centers

Primary Endpoint: all-cause death, nonfatal MI (+ preiprocedural MI), revascularization

FFR 7.4% vs. Angiography 19.7% at 3.5 Years 60.0% immediate non-culprit PCI

Main Outcomes:

- Cost: Cumulative medical cost, excluding non-medical, indirect costs
- Quality-adjusted life year (QALY): ∑ (Utility of each status × Time in each status)
- Incremental cost-effectiveness ratio (ICER) = △Cost / △ QALY
- Incremental net monetary benefit (INB) = INB = $(\Delta QALY \times willingness to pay) \Delta Cost$

Key Inputs in the Model

	Korean population		US population		EU population	
	Value	Source	Value	Source	Value	Source
Cost*						
Medical cost at index hospitalization						
Angio-guided PCI	9,842	FRAME-AMI	14,878	FAME	7,226	FLOWER-MI
FFR-guided PCI	9,326	FRAME-AMI	13,182	FAME	7,647	FLOWER-MI
Unit cost per service/product, \$						
Performance fee for IRA PCI	2,126	FRAME-AMI	2,005	FAME 2	202	FLOWER-MI
Performance fee for immediate non-IRA PCI	435	FRAME-AMI	796	FAME 2	202	FLOWER-MI
Performance fee for staged non-IRA PCI	1,357	FRAME-AMI	567	Fearon WF et al.	194	FLOWER-MI
DES, 1EA	1,431	FRAME-AMI	1,656	Fearon WF et al.	613	FLOWER-MI
Pressure wire	709	FRAME-AMI	650	FAME	428	FLOWER-MI
Guidewire	16	FRAME-AMI	85	FAME	50	FLOWER-MI
Intensive care unit cost per day	74	FRAME-AMI	2,877	FAME	346-863	FLOWER-MI
Hospitalization cost per day	15	FRAME-AMI	2,000	FAME	578-820	FLOWER-MI
Medical cost at event						
Death from any cause	9,235	HOST-EXAM	35,818	Kazi DS et al.	1,586	FLOWER-MI
Non-fatal MI	7,338	HOST-EXAM	16,544	FAME	5,370	FLOWER-MI
Repeat revascularization	7,292	HOST-EXAM	12,780	FAME	4,633	FLOWER-MI
tility						
After PCI	0.79	Kodera Set al.	0.92	COURAGE	0.85	Pocock S et al.
Recurrent MI (disutility)	-0.06	VALIANT	-0.06	VALIANT	-0.06	VALIANT

Meta-Analysis for Transition Probabilities

TCTAP2024

Patient-Level: Cost-Effectiveness of FFR-Guided PCI (4 Year)

	Cost, \$		QALYs		Cost-Effectiveness	Incremental Net
	Total	Incremental	Total	Incremental	ICER (\$/QALY)	Monetary Benefit (\$)
Utilities estimated from data						
Angiography-guided PCI	11,057	Reference	3.40	Reference		
FFR-guided PCI	9,849	-1,208	3.46	0.062	-19,484	3,378
Utilities extrapolated						
Angiography-guided PCI	11,057	Reference	3.12	Reference		
FFR-guided PCI	9,849	-1,208	3.21	0.087	-13,885	4,253

FFR-guided PCI was a more cost-effective treatment than the angiography-guided PCI

Model-Based: Probabilistic Sensitivity Analysis (PSA)

Bootstrap Technique with 25,000 Replications

According to Willingness-to-pay threshold based on GDP per capita, FFR-based decision making was cost-effective in 97%.

Cost-Effectiveness of FFR-Guided PCI in 3 Different Healthcare Systems Probabilistic Sensitivity Analysis (PSA)

Conclusion

- FFR-guided PCI continuously showed clinical benefit and cost-effective strategy among patients with stable ischemic heart disease.
- FFR-guided PCI for Non-IRA lesions in AMI patients has been tested compared with angiography-guided PCI, and two RCTs (FLOWER-MI and FRAME-AMI) showed inconclusive results.
- CEA of FFR-guided PCI in the FRAME-AMI study showed that the FFR-guided strategy was a more cost-effective approach for AMI patients with MVD.

