SYNTAX Five-year Results: Left Main Cohort

Corrado Tamburino, MD, PhD

Full Professor of Cardiology, Director of Postgraduate School of Cardiology
Chief Cardiovascular Department, Director Cardiology Division, Interventional Cardiology and Heart Failure Unit, University of Catania, Ferrarotto Hospital, Catania, Italy
Background

- The SYNTAX trial assessed the optimum revascularisation treatment for patients with de-novo LM or 3VD (or both), by randomly assigning patients to either PCI with a first-generation PES or CABG.

- For the primary endpoint of MACCE at 1 year, PCI did not meet the goal of non-inferiority compared with CABG.

- In the observational hypothesis-generating analysis of patients with LM disease, PCI had safety and efficacy outcomes comparable to CABG at 1 year.
SYNTAX Trial Design

62 EU Sites + 23 US Sites

Heart Team (surgeon & interventional cardiologist)

Amenable for both treatment options
Amenable for only one treatment approach

Stratification: LM and Diabetes

Randomized Arms
N=1800

CABG n=897
3VD n=549 (66.3%)
LM n=348 (33.7%)

TAXUS* n=903
3VD n=546 (65.4%)
LM n=357 (34.6%)

Two Registry Arms
N=1275

CABG n=1077

PCI n=198

*TAXUS Express
Conclusions

- Applying the all-comers design did not result in inclusion of all consecutive patients, as only half of the target population was enrolled.
- This design included more patients than observed in classical RCTs.
- AC-RCT participants and non-participants were different in terms of baseline characteristics and outcome.
Patient Disposition to 5 Years

LM Subset Intent-to-Treat

<table>
<thead>
<tr>
<th>CABG</th>
<th>Enrollment</th>
<th>1 Year Follow-up</th>
<th>2 Year Follow-up</th>
<th>3 Year Follow-up</th>
<th>4 Year Follow-up</th>
<th>5 Year Final Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=348</td>
<td>N=705</td>
<td>CABG 96.6%</td>
<td>CABG 92.0%</td>
<td>CABG 95.1%</td>
<td>CABG 93.4%</td>
<td>CABG 92.5%</td>
</tr>
<tr>
<td>n=336</td>
<td></td>
<td>PCI 99.4%</td>
<td>PCI 97.1%</td>
<td>PCI 98.6%</td>
<td>PCI 97.8%</td>
<td>PCI 96.9%</td>
</tr>
<tr>
<td>n=331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCI*
n=357
n=355
n=533
n=352
n=349
n=346

TAXUS Express
Heterogeneity in the Left Main Group

Left Main Isolated: n=91 (13%)
Left Main + 1VD: n=138 (20%)
Left Main + 2VD: n=218 (31%)
Left Main + 3VD: n=258 (37%)

Site-reported data
Patient Characteristics

LM Subset

<table>
<thead>
<tr>
<th></th>
<th>CABG N=348</th>
<th>TAXUS N=357</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age*, mean ± SD (y)</td>
<td>65.6 ± 10.1</td>
<td>65.4 ± 9.8</td>
<td>0.78</td>
</tr>
<tr>
<td>Medically treated diabetes*, %</td>
<td>22.4</td>
<td>21.8</td>
<td>0.86</td>
</tr>
<tr>
<td>BMI, mean ± SD</td>
<td>27.7 ± 5.0</td>
<td>28.2 ± 4.9</td>
<td>0.24</td>
</tr>
<tr>
<td>Additive euroSCORE*, mean ± SD</td>
<td>3.9 ± 2.9</td>
<td>3.9 ± 2.8</td>
<td>0.91</td>
</tr>
<tr>
<td>Total Parsonnet score*, mean ± SD</td>
<td>9.1 ± 7.4</td>
<td>8.9 ± 7.8</td>
<td>0.77</td>
</tr>
<tr>
<td>Total SYNTAX Score, mean ± SD</td>
<td>26.7 ± 11.5</td>
<td>28.1 ± 12.4</td>
<td>0.13</td>
</tr>
<tr>
<td>No. lesions, mean ± SD</td>
<td>3.2 ± 1.9</td>
<td>3.3 ± 1.8</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Core laboratory reported unless *Site-reported*
All-Cause Death to 5 Years
Left Main Subset

CABG (N=348)
- Before 1 year*: 4.5% vs 4.2% \(P=0.88 \)
- 1-2 years*: 1.9% vs 1.5% \(P=0.68 \)
- 2-3 years*: 2.3% vs 1.8% \(P=0.67 \)
- 3-4 years*: 3.0% vs 4.3% \(P=0.39 \)
- 4-5 years*: 4.2% vs 1.6% \(P=0.06 \)

TAXUS (N=357)

\(P=0.53 \)

Cumulative Event Rate (%)

Months Since Allocation

Cumulative KM Event Rate ± 1.5 SE; log-rank \(P \) value; *Binary rates

ITT population

SYNTAX 3VD 5-year Outcomes • TCT 2012 • Serruys • 23 October 2012 • Slide 8
Cardiac Death to 5 Years
Left Main Subset

Cumulative Event Rate (%)

- **CABG (N=348)**
 - Before 1 year*: 2.4% vs 3.9%
 - $P=0.24$
 - 1–2 years*: 0.9% vs 0.6%
 - $P=0.68$
 - 2–3 years*: 1.3% vs 1.2%
 - $P=1.00$
 - 3–4 years*: 1.3% vs 2.5%
 - $P=0.31$
 - 4–5 years*: 1.7% vs 0.6%
 - $P=0.27$

- **TAXUS (N=357)**

$P=0.46$

Cumulative KM Event Rate ± 1.5 SE; log–rank P value; *Binary rates

ITT population

SYNTAX 3VD 5-year Outcomes - TCT 2012 - Serruys - 23 October 2012 - Slide 9
Myocardial Infarction to 5 Years
Left Main Subset

- **CABG** (N=348)
- **TAXUS** (N=357)

Cumulative Event Rate (%)

- **Before 1 year**
 - CABG: 4.2%
 - TAXUS: 4.2%
 - *P = 0.97*

- **1–2 years**
 - CABG: 0.0%
 - TAXUS: 1.2%
 - *P = 0.12*

- **2–3 years**
 - CABG: 0.0%
 - TAXUS: 1.5%
 - *P = 0.06*

- **3–4 years**
 - CABG: 0.7%
 - TAXUS: 0.3%
 - *P = 0.61*

- **4–5 years**
 - CABG: 0%
 - TAXUS: 1.0%
 - *P = 0.25*

Cumulative KM Event Rate ± 1.5 SE; log-rank P value; *Binary rates*

- **Months Since Allocation**
 - 0: CABG 0.4%, TAXUS 0.2%
 - 12: CABG 0.6%, TAXUS 1.0%
 - 24: CABG 1.2%, TAXUS 1.7%
 - 36: CABG 1.8%, TAXUS 2.3%
 - 48: CABG 2.4%, TAXUS 2.9%
 - 60: CABG 3.0%, TAXUS 3.5%

ITT population
CVA to 5 Years
Left Main Subset

<table>
<thead>
<tr>
<th></th>
<th>CABG (N=348)</th>
<th>TAXUS (N=357)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1 year*</td>
<td>2.7% vs 0.3%</td>
<td>P=0.009</td>
</tr>
<tr>
<td>1–2 years*</td>
<td>0.9% vs 0.6%</td>
<td>P=0.68</td>
</tr>
<tr>
<td>2–3 years*</td>
<td>0.3% vs 0.3%</td>
<td>P=1.00</td>
</tr>
<tr>
<td>3–4 years*</td>
<td>0.3% vs 0.3%</td>
<td>P=1.00</td>
</tr>
<tr>
<td>4–5 years*</td>
<td>0% vs 0%</td>
<td>P=Undefined</td>
</tr>
</tbody>
</table>

P=0.03

Cumulative KM Event Rate ± 1.5 SE; log-rank P value; *Binary rates
ITT population
All-Cause Death/CVA/MI to 5 Years
Left Main Subset

CABG (N=348) vs TAXUS (N=357)

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>CABG Event Rate (%)</th>
<th>TAXUS Event Rate (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1 year</td>
<td>9.2% vs 7.0%</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>1–2 years</td>
<td>2.8% vs 3.2%</td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>2–3 years</td>
<td>2.6% vs 3.0%</td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>3–4 years</td>
<td>3.7% vs 4.9%</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>4–5 years</td>
<td>4.2% vs 2.3%</td>
<td></td>
<td>0.18</td>
</tr>
</tbody>
</table>

P = 0.57

Cumulative KM Event Rate ± 1.5 SE; log-rank P-value; *Binary rates

ITT population
MACCE to 5 Years
Left Main Subset

Before 1 year*: 13.7% vs 15.8%
P = 0.44

1–2 years*: 7.5% vs 10.3%
P = 0.22

2–3 years*: 5.2% vs 5.7%
P = 0.78

3–4 years*: 6.4% vs 8.3%
P = 0.35

4–5 years*: 5.9% vs 5.5%
P = 0.82

Cumulative Event Rate (%)
P = 0.12

Cumulative KM Event Rate ± 1.5 SE; log-rank P value; *Binary rates

SYNTAX 3VD 5-year Outcomes • TCT 2012 • Serruys • 23 October 2012 • Slide 14
Symptomatic Graft Occlusion & Stent Thrombosis to 5 Years

LM Subset

\[
P = 0.70
\]

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Patients (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG</td>
<td>4.4</td>
<td>14</td>
</tr>
<tr>
<td>PCI</td>
<td>5.1</td>
<td>17</td>
</tr>
</tbody>
</table>

Post-procedure; ITT population
SYNTAX: Definite/Probable ARC Stent Thrombosis to 5 Years *(Per Patient)*

~3% ST rate within 30 days, and then ~1-2%/yr thereafter

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Rate (%)</th>
<th>Days Post-procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute ≤1d</td>
<td>0.3</td>
<td>366-730d</td>
</tr>
<tr>
<td>Subacute 2-30d</td>
<td>2.6</td>
<td>731-1095d</td>
</tr>
<tr>
<td>Late 31-365d</td>
<td>1.7</td>
<td>1096-1460d</td>
</tr>
<tr>
<td>Very Late</td>
<td>1.3</td>
<td>1461-1825d</td>
</tr>
<tr>
<td>Total 5 year</td>
<td>10.4</td>
<td></td>
</tr>
</tbody>
</table>

Rate was ~ same in the LM and 3VD cohorts, and roughly independent of Syntax Score

Serruys PW. TCT2012
MACCE to 5 Years
Left Main Subsets

<table>
<thead>
<tr>
<th>Subset</th>
<th>CABG</th>
<th>TAXUS</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM all (n=705)</td>
<td>31.0</td>
<td>33.2</td>
<td>0.12</td>
</tr>
<tr>
<td>LM only (n=91)</td>
<td>23.5</td>
<td>14.3</td>
<td>0.30</td>
</tr>
<tr>
<td>LM+1VD (n=138)</td>
<td>32.9</td>
<td>30.1</td>
<td>0.67</td>
</tr>
<tr>
<td>LM+2VD (n=218)</td>
<td>34.5</td>
<td>40.9</td>
<td>0.24</td>
</tr>
<tr>
<td>LM+3VD (n=258)</td>
<td>29.9</td>
<td>44.0</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Cumulative KM Event Rate; log-rank P-value

ITT population

SYNTAX 3VD 5-year Outcomes - TCT 2012 - Smurray - 23 October 2012 - Slide 16
MACCE to 5 Years by SYNTAX Score Tercile

LM Subset Low Scores 0–22

- **CABG (N=104)**
- **TAXUS (N=118)**

LM Disease

- Cumulative KM Event Rate ± 1.5 SE; log-rank \(P \) value
- Months Since Allocation
- Cumulative Event Rate (%)
- \(P=0.74 \)
- 31.5%
- 30.4%

<table>
<thead>
<tr>
<th>Event</th>
<th>CABG</th>
<th>PCI</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>11.3%</td>
<td>7.0%</td>
<td>0.28</td>
</tr>
<tr>
<td>CVA</td>
<td>4.1%</td>
<td>1.8%</td>
<td>0.28</td>
</tr>
<tr>
<td>MI</td>
<td>3.1%</td>
<td>6.2%</td>
<td>0.32</td>
</tr>
<tr>
<td>Death, CVA or MI</td>
<td>15.2%</td>
<td>13.9%</td>
<td>0.71</td>
</tr>
<tr>
<td>Revasc.</td>
<td>20.3%</td>
<td>23.0%</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Site-reported Data; ITT population
MACCE to 5 Years by SYNTAX Score Tercile

LM Subset Intermediate Scores 23–32

<table>
<thead>
<tr>
<th>Event</th>
<th>CABG</th>
<th>PCI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>19.3%</td>
<td>8.9%</td>
<td>0.04</td>
</tr>
<tr>
<td>CVA</td>
<td>3.6%</td>
<td>1.0%</td>
<td>0.23</td>
</tr>
<tr>
<td>MI</td>
<td>4.6%</td>
<td>6.0%</td>
<td>0.71</td>
</tr>
<tr>
<td>Death, CVA or MI</td>
<td>24.9%</td>
<td>15.7%</td>
<td>0.11</td>
</tr>
<tr>
<td>Revasc.</td>
<td>16.6%</td>
<td>22.2%</td>
<td>0.40</td>
</tr>
</tbody>
</table>

LM Disease

P=0.88

Cumulative KM Event Rate ± 1.5 SE; log-rank P value

Site-reported Data; ITT population
MACCE to 5 Years by SYNTAX Score Tercile

Low to Intermediate Scores (0–32)

LM Disease

<table>
<thead>
<tr>
<th>Event Type</th>
<th>CABG</th>
<th>PCI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>15.1%</td>
<td>7.9%</td>
<td>0.02</td>
</tr>
<tr>
<td>CVA</td>
<td>3.9%</td>
<td>1.4%</td>
<td>0.11</td>
</tr>
<tr>
<td>MI</td>
<td>3.8%</td>
<td>6.1%</td>
<td>0.33</td>
</tr>
<tr>
<td>Death, CVA or MI</td>
<td>19.8%</td>
<td>14.8%</td>
<td>0.16</td>
</tr>
<tr>
<td>Revasc.</td>
<td>18.6%</td>
<td>22.6%</td>
<td>0.36</td>
</tr>
</tbody>
</table>

MACCE to 5 Years by SYNTAX Score Tercile

LM Subset High Scores ≥33

<table>
<thead>
<tr>
<th>Event</th>
<th>CABG</th>
<th>PCI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>14.1%</td>
<td>20.9%</td>
<td>0.11</td>
</tr>
<tr>
<td>CVA</td>
<td>4.9%</td>
<td>1.6%</td>
<td>0.13</td>
</tr>
<tr>
<td>MI</td>
<td>6.1%</td>
<td>11.7%</td>
<td>0.13</td>
</tr>
<tr>
<td>Death, CVA or MI</td>
<td>22.1%</td>
<td>26.1%</td>
<td>0.40</td>
</tr>
<tr>
<td>Revasc.</td>
<td>11.6%</td>
<td>34.1%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Cumulative KM Event Rate ± 1.5 SE; log-rank P value

Site-reported Data; ITT population
Summary

Left Main Subset

- At 5 years, overall MACCE in the PCI group was comparable with CABG (31.0% CABG vs 36.9% PCI)
- Similar overall safety outcomes (Death/CVA/MI) between CABG and PCI at 5 years (20.8% CABG vs 19.0% PCI)
- There was a higher rate of revascularization in the PCI group (15.5% CABG vs 26.7% PCI), driven primarily by patients with high baseline SYNTAX scores
- A higher rate of CVA in the CABG group (4.3% CABG vs 1.5% PCI) was driven mostly by periprocedural events, with no difference between groups after 1 year
- PCI outcomes are excellent relative to CABG in LM isolated and LM+1VD
SYNTAX (2009-2013): Which Legacy?

1-Year Outcomes

Ferrarotto Hospital
University of Catania

5-Year Outcomes

Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial

Legacy #1 - Risk models for Complex PCI

Angiographic
- Residual SYNTAX Score
- CABG SYNTAX score
- Plaque Compos SYNTAX score
- MI SYNTAX score

Clinical
- ACE F CrCl
- MI SYNTAX score
- Logistic EuroSCORE
- Logistic EuroSCORE II
- Plaque Compos SYNTAX score

Combined
- Additive CSS
- Logistic CSS
- Additive EuroScore
- Logistic EuroSCORE
- Logistic EuroSCORE II

Functional
- Functional SYNTAX score
- Non Invasive FSS
- GRC
- SYNTAX score II

Adapted from Capodanno D, Eur Heart J 2012;33:3008-10
Legacy #2 – SYNTAX Advanced Our understanding on how to improve the outcomes of LM PCI

- Use best in class DES
 - Thienopyridine pre-loading
 - Statin pre-loading
 - Bivalirudin anticoagulation
- Optimal pharmacotherapy
- IVUS/FFR to assess the intermediate LM lesion
- FFR to avoid unnecessary stenting, but also to ensure complete ischemic revascularization
- IVUS guided LM stenting
 - 1- vs 2-stent techniques
 - Debulking
 - Hemodynamic support
 - Staging
 - Routine angiographic FU

Ferrarotto Hospital
University of Catania
Legacy #3 – From the Ashes of the SYNTAX, a New Trial: The EXCEL

~ 3600 patients with left main disease

SYNTAX score ≤ 32
Consensus agreement by the Heart Team

Yes
N ~ 2600

Xience
CABG

Clinicaltrials.gov id NCT01205776
Legacy #4 - The Heart Team Approach

The rationale for Heart Team decision-making for patients with stable complex coronary artery disease

Stuart J. Head¹, Sanjay Kaul², Michael J. Mack³, Patrick W. Serruys¹, David P. Taggart⁴, David R. Holmes Jr⁵, Martin B. Leon⁶,⁷, Jean Marco⁸, Ad J.J.C. Bogers¹, and A. Pieter Kappetein¹*

The Heart Team of Cardiovascular Care

David R. Holmes, Jr, MD,* Jeffrey B. Rich, MD,† William A. Zoghbi, MD,‡ Michael J. Mack, MD,§

• Initially introduced in revascularization trials to select patients for randomization. The Coronary Heart Team consists of a clinical/non-invasive cardiologist, an interventional cardiologist, and a cardiac surgeon. Other physicians with specific expertise can be added if necessary.
• The Heart Team has recently become a class 1C recommendation in European and American guidelines on myocardial revascularization

Head SJ, et al. Eur Heart J 2013 In press
5-Year from SYNTAX… key messages

For patients with left main disease

- Revascularization with PCI has comparable safety and efficacy outcomes to CABG

- Although formally unproved at this stage, PCI seems a reasonable treatment alternative in this patient population, in particular, when the SYNTAX Score is low (≤22) or intermediate (23-32)

Legacies from SYNTAX include evolving concepts in trial design and decision making for LM PCI