Main Mechanisms of DES In-stent Restenosis: Underexpansion, Intimal Hyperplasia, Neoatherosclerosis, Stent Fracture and Malapposition

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure

I have nothing to disclose

ISR – Underexpansion

56-year old male

■ Primary PCI for STEMI → TAXUS 3.0 (28) and 3.5 (28)

After 9 months, effort-related chest pain

IVUS optimization is useful to correct stent underexpansion especially in the long lesion

COLLEGE MEDICINE

Underexpansion Predicts DES Restenosis

MSA Cut-offs Predicting 9-month ISR

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

LM Stent Optimization

on a segmental basis

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

ISR - Intimal Hyperplasia 71 Year-Old Female, Unstable angina 8YA s/p BMS at pRCA and mLAD Hypertension, Diabetes

MSA 6.3mm² MLA 2.1mm² %IH 67%

What is the mechanism of ISR?

COLLEGE MEDICINE

Post-stenting 6 Mo 2 Yr

subsequent progression of IH *Kang et al. Am J Cardiol 2010;105:1402-8*

Kang et al. Circ Cardiovasc Interv 2011;4:9-14

COLLEGE MEDICINE

CardioVascular Research Foundatio

Early Neointima

Neoatherosclerosis

Chieffo et al. Am J Cardiol 2009;104:1660–7 Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8

Nakazawa et al. JACC 2011;57:1314–22

Optical Coherence Tomographic Analysis of In-Stent Neoatherosclerosis After Drug–Eluting Stent Implantation

Soo-Jin Kang, MD; Gary S. Mintz, MD; Takashi Akasaka, MD, PhD; Duk-Woo Park, MD, PhD; Jong-Young Lee, MD; Won-Jang Kim, MD; Seung-Whan Lee, MD, PhD; Young-Hak Kim, MD, PhD; Cheol Whan Lee, MD, PhD; Seong-Wook Park, MD, PhD; Seung-Jung Park, MD, PhD

50 DES-ISR (Median F/U 32 months) **TCFA 52% Rupture 58%** Thrombi 58%

Kang et al. Circulation 2011;123:2954-63

Stable vs. Unstable Angina

	Stable	Unstable	Р
	N=30	N=20	
Fibrous cap thickness, µm	100 (60-205)	55 (42-105)	0.006
Incidence of thrombi	13 (43%)	16 (80%)	0.010
Incidence of red thrombi	1 (3%)	6 (30%)	0.012
Incidence of rupture	14 (47%)	15 (75%)	0.044
Incidence of TCFA	11 (37%)	15 (75%)	0.008

Kang et al. Circulation 2011;123:2954-63

DES Duration >20 Months Best Predict TCFA-Containing Neointima

Kang et al. Circulation 2011;123:2954-63

Tissue Characterization of In-Stent Neointima Using Intravascular Ultrasound Radiofrequency Data Analysis

Soo-Jin Kang, MD^a, Gary S. Mintz, MD^b, Duk-Woo Park, MD^a, Seung-Whan Lee, MD^a, Young-Hak Kim, MD^a, Cheol Whan Lee, MD^a, Ki-Hoon Han, MD^a, Jae-Joong Kim, MD^a, Seong-Wook Park, MD^a, and Seung-Jung Park, MD^a,*

The longer f/u duration, the greater atherosclerotic change

Kang SJ et al. AJC 2010 ;106:1561-5

Incidence and Time Course of Neoatherosclerosis; from MGH OCT registry

Yonetsu et al. Am J Cardiol 2012;110:933–9

CardioVascular Research Foundation

OCT Findings of BMS-ISR at 10 Years Clinically-driven TLR, Median F/U time 11 years

Kang et al. JACC Cardiovasc Imaging 2012;5:1267-8

OCT Analysis in Patients with Very Late Stent Thrombosis

Definite VLST (27 DES, 6 BMS)

Kang et al. JACC Cardiovasc imaging, 2013 in press

Predictors for Neoatherosclerosis Retrospective Study from MGH OCT Registry

Multivariable Analysis			
	Adjusted OR	95% CI	р
SES	3.86	1.44 – 10.38	0.007
PES	24.17	6.02 - 97.02	<0.001
ZES	7.18	1.51 – 34.21	0.013
EES	6.46	1.65 – 25.34	0.007
Age >65 years	1.84	0.85 – 3.97	0.121
Stent age >48 months	10.45	3.71 – 29.41	<0.001
Current smoking	7.03	2.46 - 20.04	<0.001
Chronic renal disease	3.69	1.10 – 12.35	0.035
ACE-I / ARB use	0.39	0.17 – 0.91	0.028

Yonetu et al. Circ Cardiovasc Imaging 2012;5:660-6

Residual Plaque Predicts Edge Restenosis

	Population	DES	F/U time	Predictor
SIRIUS ¹	6 edge restenosis vs. 162 controls	SES	8 mo	Ref segment PB 60% vs. 41% (p<0.01)
TAXUS ²	276 edge stenosis	PES	9 mo	Ref segment PB 47%

¹ Am J Cardiol 2005;96:1251-3 ²Liu et al. Am J Cardiol 2009;103:501-6

ARTICLE IN PRESS

Intravascular Ultrasound Predictors for Edge Restenosis After Newer Generation Drug-Eluting Stent Implantation

Specificity 86%

422 R-ZES

813 EES

Sensitivity 86% Specificity 80%

Reference segment residual PB<55% may be useful to determine the optimal landing zone of stent deployment

Specificity 87%

Kang et al. Am J Cardiol 2013 in press

DES Fracture Increased intimal hyperplasia at the fracture site

CardioVascular Research Foundation

Stent Fracture in DES-VLST

55/maleSES 7 years agoVLST with STEMI

At fracture site

Adjacent intimal rupture

Kang et al. JACC Cardiovasc Imaging 2013 in press

Acute Stent Malapposition (ASM) Little Evidence Linking ASM to MACE

Study	ASM frequency	Clinical outcomes
HORIZON-AMI ¹	34% of PES 39% of BMS	39% resolved by negative remodeling No difference in 13-month MACE
TAXUS IV,V,VI ²	9.7% of PES 7.2% of BMS	No difference in 9-mo MACE between ASM vs. control (12% vs. 9%, p=0.45)
Hong et al. ³	7.2% of DES	No MACE or TLR at 6 months
Kimura et al.4	18% of SES	25% of ASM resolved at 6 months No ISR or ST

¹*Guo et al. Circulation 2010;122:1077-84* ²*Steinberg et al. JACC interv 2010;3:486-94* ³*Hong et al. Circulation 2006;113:414-9* ⁴*Kimura et al. Am J Cardiol 2006;98:36-42*

ARTICLE IN PRESS

Intravascular Ultrasound Assessment of Drug-Eluting Stent Coverage of the Coronary Ostium and Effect on Outcomes

LMCA 68% (length 3.4±1.7mm)	LMCA 23%
• RCA 59%	RCA 28%
■ LAD 53%	LAD 33% (residual PB 42±11%)

Ostial Restenosis Rate

with vs. without strut protrusion (3.2% vs. 2.3%), p=NS
incomplete vs. complete coverage (2.4% vs. 3.0%), p=NS

Kang et al. Am J Cardiol 2013 in press

Summary

- IVUS provides new insights for mechanisms of restenosis
- Intimal hyperplasis is a general mechanism of DES-ISR. In-stent neoatherosclerosis is an important mechanism of the late restenosis
- As preventable mechanisms, underexpansion and large reference residual plaque should be corrected to avoid stent failure

