

Transcatheter LAA Occlusion: More than Anticoagulation-Title: Time to Intervene!

Saibal Kar, MD, FACC, FAHA, FSCAI Director of Interventional Cardiac Research Cedars Sinai Medical Center, Los Angeles, CA Email: karsk@cshs.org

Disclosures

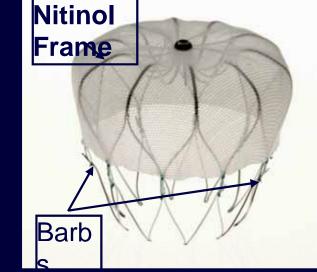
- Research Grants: St Jude Medical, Boston Scientific, Gore
- International Proctor: Boston Scientific, Gore Medical, St Jude Medical
- EC Committee: CLOSURE I trial

Introduction

- Thrombus arrising in the Left atrial appendage is the major cause of stroke in patients with atrial fibrillation (AF)
- Long term ntithrombotic therapy is the standard of care for prevention of stroke in AF patients
- Percutaneous closure of the left atrial appendage(LAA) is alternative to long term antithrombotic therapy
 - Lower LAA clot formation
 - Lower long term risk of bleeding

Prevention of stroke in AF: Treatment Options

- Long Term antithrombotic therapy
 - Coumadin therapy
 - New oral anticoagulants: Dabigatran, Rivaroxaban, Apixaban
 - Antiplatelet agents
- Surgical Amputation or Ligation of LAA
- Percutaneous Occlusion of the LAA


New Oral Agents versus Coumadin

There is no free lunch: If it prevents clots, it will bleed

- Overall bleeding risk is similar
 - IC bleed is lower than coumadin
- Does not require frequent monitoring
- Shorter half life
- Drug intolerance equivalent or higher than coumadin
- Drug dosing in extreme body weight or renal failure patients is problematic

LAA occlusion Devices (Endovascular Nitinol approach)

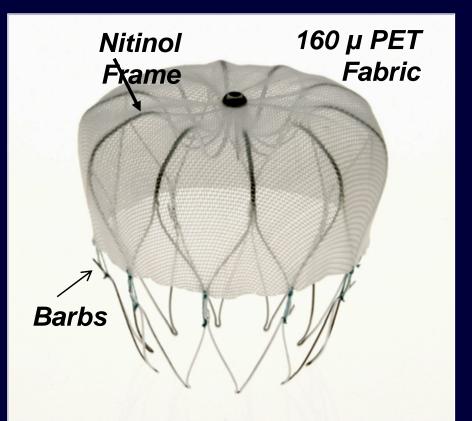
Vatchman Device Gen II (Atritech) §

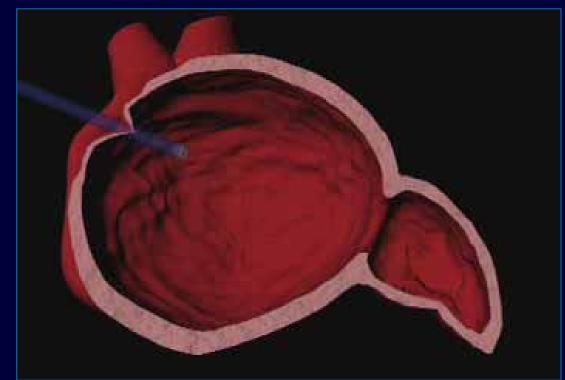
Amplatzer Cardiac Plug §

§ Investigational in US

WaveCrest Device (Coherex)# # Investigational in Europe

LAA occlusion Devices

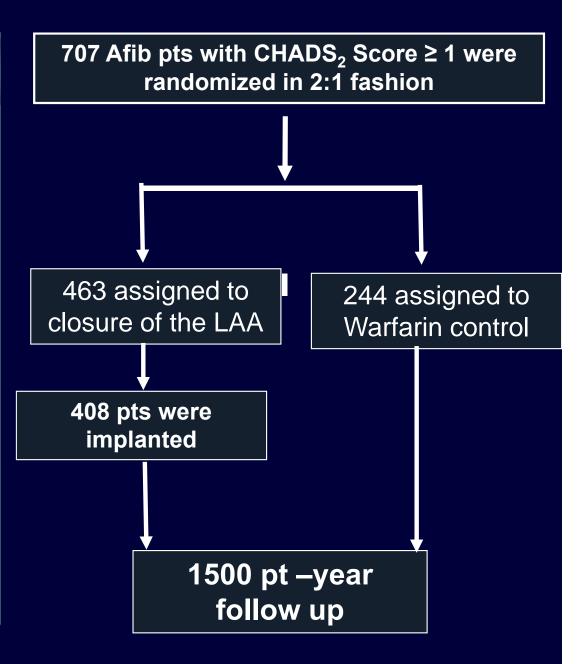

Transpericardial approach


 Lariat Device (Sentreheart)

WATCHMAN[®] Left Atrial Appendage Occluder System(Atritech Inc)

Clinical Studies

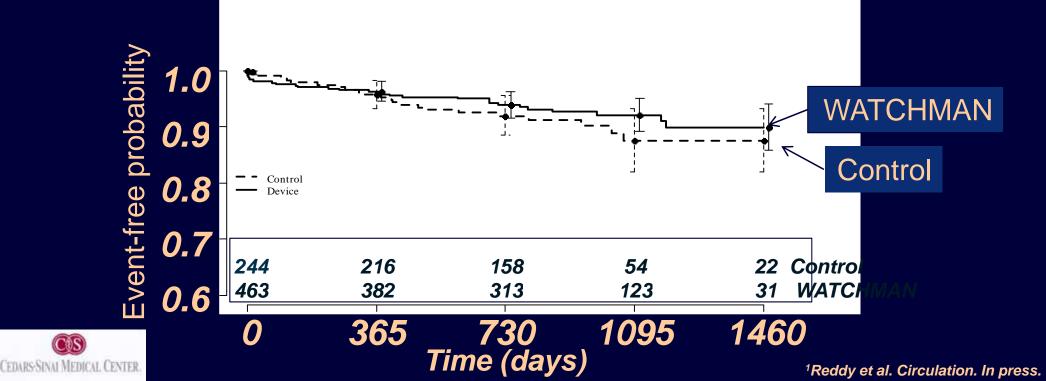
STUDY	PATIENTS	SITES	COMMENTS
Pilot	66	8	 318 patient years of follow-up 30 patients with 5+ years of follow-up
PROTECT AF	800	 1,500 patient years of follow-up 27 months average follow-up per pati 	
Continued Access Registry (CAP)	566	26	 Significantly improved safety results
ASAP	150	4	 Treat patients contra-indicated for warfarin
EVOLVE	69	3	 Evaluate next generation WATCHMAN
PREVAIL	400	≤50	 Same endpoints as PROTECT AF Revised inclusion/exclusion criteria Initiate enrollment October 2010 Enrollment completed in June 2012


TOTAL 2051

PROTECT AF Trial

Design

- DESIGN: Prospective randomized, non-inferiority trial of LAA closure versus coumadin in Afib pts for prevention of stroke
- OBJECTIVE Effectiveness and Safety of LAA closure for prevention stroke in comparison to coumadin for afib pts
- PRIMARY END POINT: Composite end point of stroke, cardiovascular death or system embolisation
- PRIMARY SAFETY END POINT:
 Device embolization, Bleeding



PROTECT-AF Trial: LAA Closure is effective in stroke prevention

WATCHMAN was non-inferior to warfarin therapy for the prevention of stroke, cardiovascular death, or systemic embolism in patients with nonvalvular AF¹

Cohort 1500 Pt-Yrs	WATCHMAN Rate (Events/Pt-Yrs)			CONTROL (warfarin) Rate (Events/Pt-Yrs)		95% CI
Intention-To-Treat	3.0	31/1025.7	4.3	24/562.7	0.71	0.44, 1.30*
Post-Procedure	2.5	25/1015.7	4.3	24/562.7	0.58	0.35, 1.09

Primary Efficacy Endpoint at 1500 Pt-Yrs (ITT population)

PROTECT AF Intent-to-Treat: Primary Safety Results

Ochart	WATCHMAN	Control		
Cohort	Rate (95% CI)	Rate (95% CI)	Relative Risk (95% CI)	
600 pt-yrs	11.6(8.5, 15.3)	4.1(1.9, 7.2)	2.85(1.48, 6.43)	
900 pt-yrs	8.7(6.4, 11.3)	4.2(2.2, 6.7)	2.08(1.18, 4.13)	
1065 pt-yrs	7.4(5.5, 9.7)	4.4(2.5, 6.7)	1.69(1.01, 3.19)	
1350 pt-yrs	6.2(4.7, 8.1)	3.9(2.3, 5.8)	1.60(0.99, 2.93)	
1500 pt-yrs	5.5(4.2, 7.1)	3.6(2.2, 5.3)	1.53(0.95, 2.70)	

 Acute WATCHMAN events drove the rate at the first interim analysis; enrollment was ongoing and there was limited long-term follow-up

 Favorable long term WATCHMAN results lead to decrease over time; enrollment was completed, few late WATCHMAN events

Protect AF Summary

- Protect AF trial was the first study that demonstrated that LAA closure was non inferior to long term anticoagulation in prevention of stroke
- There were certain safety issues of the procedure which decreased over time

Safety of Percutaneous Left Atrial Appendage Closure Results from WATCHMAN LAA System for Embolic Protection in Patients with AF (PROTECT AF) and the Continued Access Registry

> Reddy, Homes, Doshi, Neuzil, Kar Circulaltion. 2011;123:417-424.

Performance Metrics PROTECT AF vs CAP

	PROTECT	PROTECT AF		CAP	p-value*	p-
	AF	Early	Late	074		value ±
Procedure Time (Mean ± SD)	62 ± 34	67 ± 36	58 ± 33	50 ± 21	<0.001	<0.001
Implant Success	485/542 (89.5%)	239/271 (88.2%)	246/27 1 (90.8%)	437/460 (95.0%)	0.001	0.001
45-day Warfarin Discontinuation Among Implanted	414/478 (86.6%)	194/235 (82.6%)	220/24 3 (90.5%)	352/371 (94.9%)	<0.001	<0.001

From tests comparing the PROTECT AF cohort with CAP

From tests for differences across three groups (early PROTECT AF, late PROTECT AF, and CAP)

- Improvements seen over time in PROTECT AF
 - Shorter implant time, higher implant success rate, higher warfarin discontinuation rate
- Trends confirmed in CAP

Reddy, Holmes, Kar et al. Circulation 2011

Safety Event Rates PROTECT AF vs CAP

	PROTECT	PROTECT PROTECT AF		САР	p-	p-
	AF	Early	Late	CAP	value*	value ±
Procedure/Device Related Safety Adverse Events within 7 Days	42/542 (7.7%)	27/271 (10.0%)	15/271 (5.5%)	17/460 (3.7%)	0.007	0.006
Serious Pericardial Effusions within 7 Days	27/542 (5.0%)	17/271 (6.3%)	10/271 (3.7%)	10/460 (2.2%)	0.019	0.018
Procedure Related Stroke	5/542 (0.9%)	3/271 (1.1%)	2/271 (0.7%)	0/460 (0.0%)	0.039	0.039

*From tests comparing the PROTECT AF cohort with CAP ± From tests for differences across three groups (early PROTECT AF, late PROTECT AF, and CAP)

- Improvements seen over time for acute safety events
- Fewer total procedure/device related events

Reddy, Holmes, Kar et al. Circulation 2011

PROTECT AF Intent-to-Treat: Primary Safety Results

Ochart	WATCHMAN	Control		
Cohort	Rate (95% CI)	Rate (95% CI)	Relative Risk (95% CI)	
600 pt-yrs	11.6(8.5, 15.3)	4.1(1.9, 7.2)	2.85(1.48, 6.43)	
900 pt-yrs	8.7(6.4, 11.3)	4.2(2.2, 6.7)	2.08(1.18, 4.13)	
1065 pt-yrs	7.4(5.5, 9.7)	4.4(2.5, 6.7)	1.69(1.01, 3.19)	
1350 pt-yrs	6.2(4.7, 8.1)	3.9(2.3, 5.8)	1.60(0.99, 2.93)	
1500 pt-yrs	5.5(4.2, 7.1)	3.6(2.2, 5.3)	1.53(0.95, 2.70)	

 Acute WATCHMAN events drove the rate at the first interim analysis; enrollment was ongoing and there was limited long-term follow-up

 Favorable long term WATCHMAN results lead to decrease over time; enrollment was completed, few late WATCHMAN events

Continued Access Registry (CAP)

Safety of Percutaneous Left Atrial Appendage Closure Results from WATCHMAN LAA System for Embolic Protection in Patients with AF (PROTECT AF) and the Continued Access Registry

> Reddy, Homes, Doshi, Neuzil, Kar Circulaltion. 2011;123:417-424.

Performance Metrics PROTECT AF vs CAP

	PROTECT	PROTECT AF		CAP	p-value*	p-
	AF	Early	Late	074		value ±
Procedure Time (Mean ± SD)	62 ± 34	67 ± 36	58 ± 33	50 ± 21	<0.001	<0.001
Implant Success	485/542 (89.5%)	239/271 (88.2%)	246/27 1 (90.8%)	437/460 (95.0%)	0.001	0.001
45-day Warfarin Discontinuation Among Implanted	414/478 (86.6%)	194/235 (82.6%)	220/24 3 (90.5%)	352/371 (94.9%)	<0.001	<0.001

From tests comparing the PROTECT AF cohort with CAP

From tests for differences across three groups (early PROTECT AF, late PROTECT AF, and CAP)

- Improvements seen over time in PROTECT AF
 - Shorter implant time, higher implant success rate, higher warfarin discontinuation rate
- Trends confirmed in CAP

Reddy, Holmes, Kar et al. Circulation 2011

Safety Event Rates PROTECT AF vs CAP

	PROTECT	PROTECT PROTECT AF		САР	p-	p-
	AF	Early	Late	CAP	value*	value ±
Procedure/Device Related Safety Adverse Events within 7 Days	42/542 (7.7%)	27/271 (10.0%)	15/271 (5.5%)	17/460 (3.7%)	0.007	0.006
Serious Pericardial Effusions within 7 Days	27/542 (5.0%)	17/271 (6.3%)	10/271 (3.7%)	10/460 (2.2%)	0.019	0.018
Procedure Related Stroke	5/542 (0.9%)	3/271 (1.1%)	2/271 (0.7%)	0/460 (0.0%)	0.039	0.039

*From tests comparing the PROTECT AF cohort with CAP ± From tests for differences across three groups (early PROTECT AF, late PROTECT AF, and CAP)

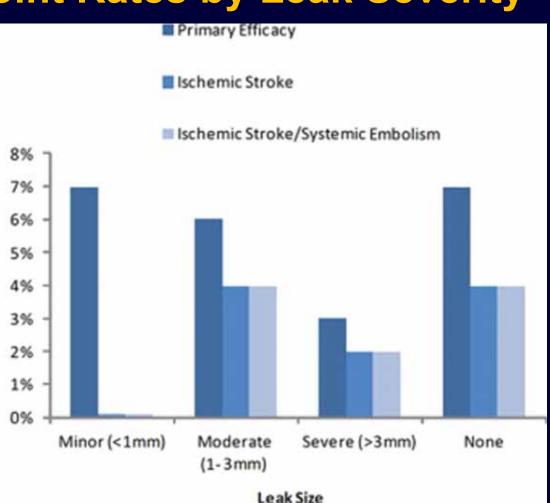
- Improvements seen over time for acute safety events
- Fewer total procedure/device related events

Reddy, Holmes, Kar et al. Circulation 2011

Impact of incomplete LAA closure following Watchman Device

Frequency and impact of peri-device leak 32% pts had small leak <5 mm Leaks < 5mm were graded in 3 categories

Viles-Gonzalez, J. F. Kar S et al. J Am Coll Cardiol 2012;59:923-929



Copyright ©2012 American College of Cardiology Foundation. Restrictions may apply the

Primary Efficacy Endpoint Rates by Leak Severity

Event Rate

Peri-device flow around the Watchman Device is common and does lead to increase in stroke or thromboembolism

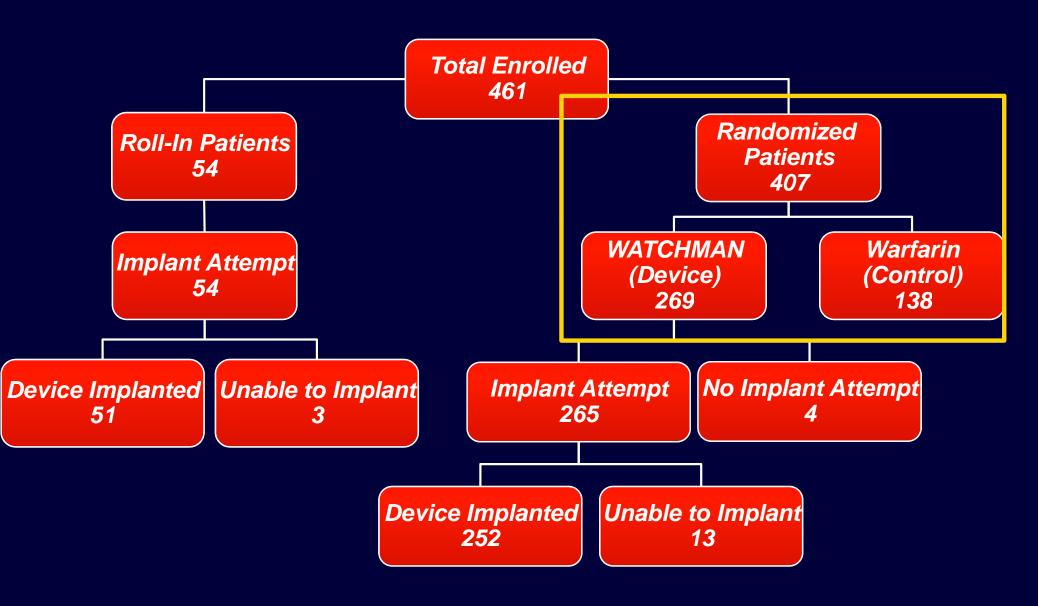
Viles-Gonzalez, J. F. Kar S, et al. J Am Coll Cardiol 2012;59:923-929

Copyright ©2012 American College of Cardiology Foun<mark>dation, Restrictions may app (Mullogy</mark>

Results of Randomized Trial of LAA Closure vs Warfarin for Stroke/ Thromboembolic Prevention in Patients with Non-valvular Atrial Fibrillation (PREVAIL)

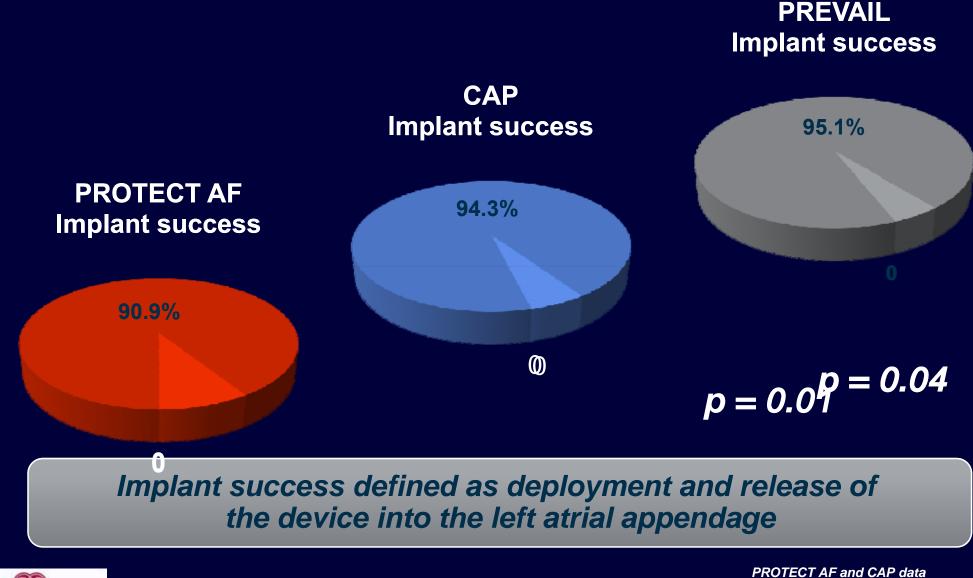
David R. Holmes¹, Shephal Doshi², Saibal Kar³, Jose Sanchez⁴, Vijay Swarup⁵, Brian Whisenant⁶, Miguel Valderrabano⁷, Kenneth Huber⁸, Daniel Lustgarten⁹, Vivek Reddy¹⁰ on behalf of the PREVAIL investigators

¹Mayo Clinic, Rochester, MN, USA, ²Pacific Heart Institute / St. John's Health Center, Santa Monica, CA, ³Cedars-Sinai Medical Center, Los Angeles, CA, ⁴Mercy Heart and Vascular, St. Louis, MO, ⁵Arizona Heart Rhythm Research Center, Phoenix, AZ, ⁶Intermountain Medical Center, Murray, UT, ⁷The Methodist Hospital Research Institute, Houston, TX, ⁸Cardiovascular Consultants, PC, Kansas City, MO, ⁹Fletcher Allen Health Care Inc., Burlington, VT, ¹⁰Mount Sinai School of Medicine, Cardiology, New York, NY

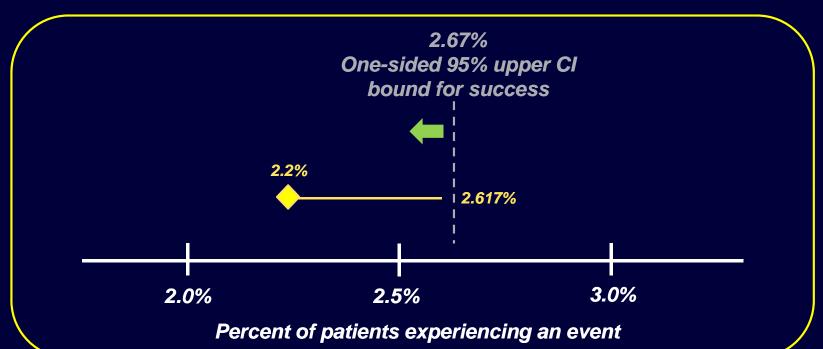


Primary Endpoints

- Acute (7-day) occurrence of death, ischemic stroke, systemic embolism and procedure or device related complications requiring major cardiovascular or endovascular intervention
 - Timepoint = 7 days post randomization
- Comparison of composite of stroke, systemic embolism, and cardiovascular/unexplained death
 - Timepoint = 18 months
- Comparison of ischemic stroke or systemic embolism occurring >7 days post randomization
 - Timepoint = 18 months

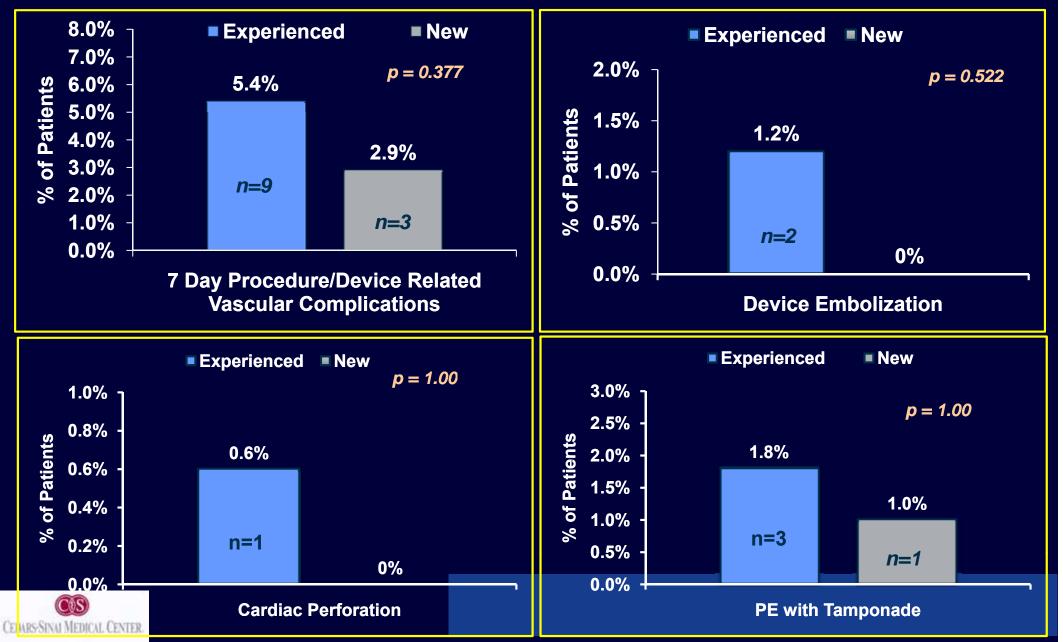


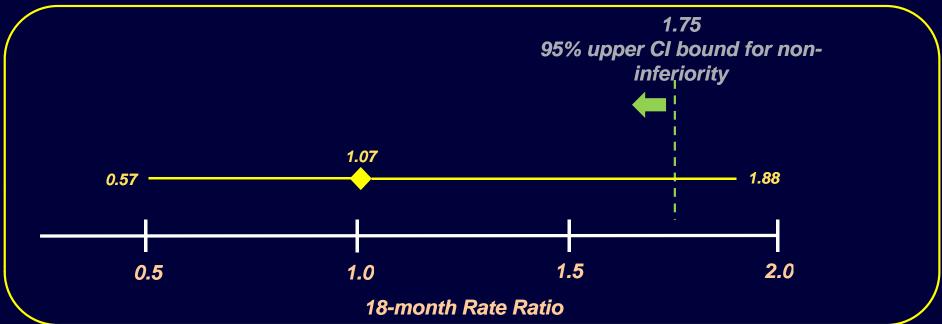
PREVAIL Enrollment


Procedure Implant Success

CEDARS-SINAI MEDICAL CENTER

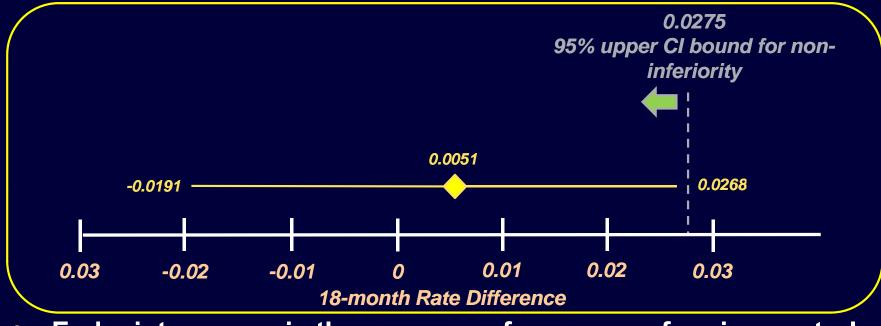
from Reddy, VY et al. Circulation. 2011;123:417-424.


First Primary Endpoint Acute (7-day) Procedural Safety


- 6 events in device group = 2.2% (6/269)
- Pre-specified criterion met for first primary endpoint (95% Upper confidence bound < 2.67%)
 - 95% CI = 2.618%

PREVAIL Complications New vs Experienced Operator

Second Primary Endpoint Composite 18-month Efficacy



- Similar 18-month event rates in both control and device groups = 0.064
- Upper 95% CI bound slightly higher than allowed to meet success criterion (<1.75)
 - Limited number of patients with follow-up through 18 months thus far (Control = 30 pts, Device = 58 pts)

Results are preliminary; final validation not yet complete

Third Primary Endpoint 18-month Thrombolic Events

 Endpoint success in the presence of an over performing control group

Device 18-Month Rate Control 18-Month Rate

0.0253 0.0201
 Pre-specified non-inferiority criterion met for third primary endpoint (95% CI Upper Bound < 0.0275%)

Results are preliminary; final validation not yet complete

PREVAIL: Summary

- Despite implantation in higher risk patients the Watchman device can be safely implanted by new operators
- 2 of 3 primary endpoints were met even in the presence of an over performing control group
- The Watchman device is an alternative to oral anticoagulation therapy for thromboembolic prevention in patients with non valvular atrial fibrillation

AMPLATZER® Cardiac Plug

CAS

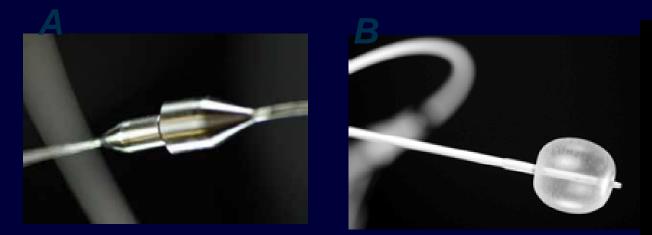
CE Mark – 2008
 > 400 implants WW

U.S. – 2010
 Limited to
 investigational use
 under approved
 clinical protocol

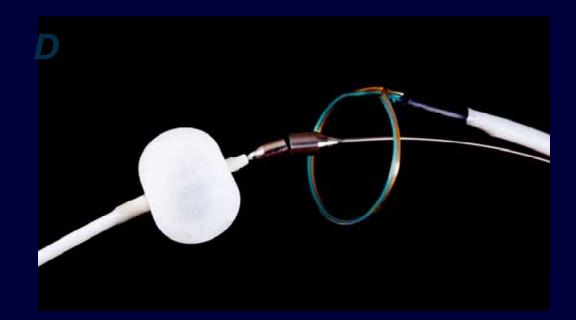
CENARSSINA AMPLATZER® Cardiac Plug - Notice of Availability - Caution: Investigational device. Limited by Federal (U.S.) law to investigational use

Clinical Studies using ACP Plug

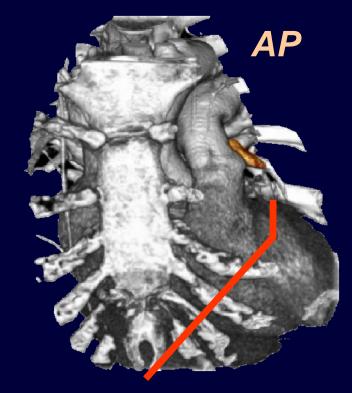
- CE Mark since 2008
- European Post Market registry
 - 204pts enrolled in 20 countries
- US Clinical Trial
 - Pilot study; Just completed enrollment of 45 pts (31 device 14 medical Rx)
 - Prospective randomized study expected to start later in 2011

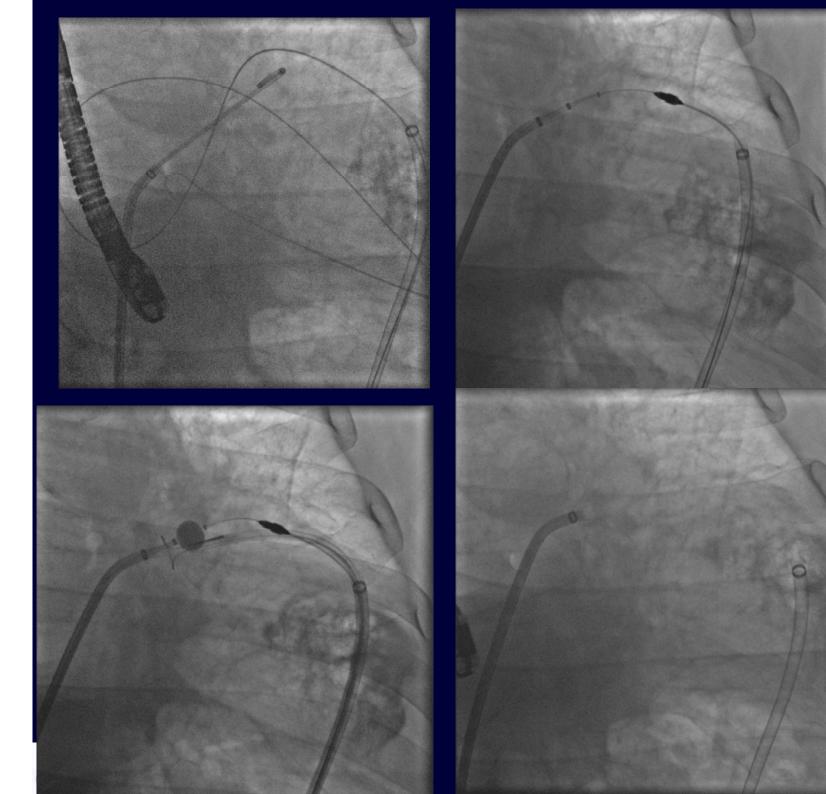


PCR


Summary

- Higher risk patient population not tolerable to anticoagulation with CHADS₂ score of 2.6 and prior history of stroke 37.9%
- Excellent implant success rate 96.6% and occlusion rate 99.5% at 6 months
- Rate of safety events (5.4%) compares favorably with other devices and previous ACP publications
- Only 2 (1.98%) strokes at 101 patient years compared with the CHADS₂ prediction of 5.6%
- Training, implant technique and experience mitigate risk of safety events


net guide Endocath occlusion balloor


Figure 1

Summary Oral Anticoagulation vs. LAA occlusion

	Stroke risk vs. warfarin HR	Major Bleeding /100 pt-yr	Discontinuation of Drug In study	Contraindication or intolerant
Warfarin	1	4.7	25%	~15%
Watchman (PROTECT AF)	0.71	3.5	N/A	Transient anticoagulation
Dabigatran 150 (RE-LY)	0.66*	3.11	21%	~15%
Apixaban (ARISTOTLE)	0.79*	2.13*	25.3%	~15%
Rivaroxaban (ROCKET AF)	0.79	3.6	23.7%	~15%

New OATS reduce stroke risk but have continued bleeding and discontinuation over time

CEDARS-SINAI MEDICAL CENTER

* Superior to warfarin

Summary Oral Anticoagulation vs LAA occlusion

	NEW Oral Anti-Thrombotics	WATCHMAN LAAC
Complications	 Continued /ongoing bleeding due to drug use (Class effect- Dabigatran, Apixaban, Rivaroxaban and Warfarin) – no mitigation other than stopping the drug. Gastrointestinal Bleeding, Dyspepsia, Myocardial Infarction (higher with Dabigatran) 	Primarily Procedural- pericardial effusions – can be mitigated with detailed implant training
	 Drug effect not reversible (Dabigatran as an example) 	
Compliance	20-30% patients discontinue drugs (dabigatran),	A majority of patients can be taken off warfarin (85-95%)

Conclusion

- Percutaneous Closure of LAA is an effective alternative to long term anticoagulation
 - Early safety but no long term issues
- Long term antithrombotic agents are effective but have bleeding issues and intolerance
- Ongoing studies are enrolling more paitents to confirm this hypothesis

Is LAA closure superior to medical treatment

- Left atrial appendage occlusion is most likely superior to antithrombotic therapy in following
 - Patients at bleeding risk
 - Patients who are already on multiple antiplatelet agents
 - Patients intolerant / non compliant for long term antithrombotic therapy

WE shall PREVAIL

