Cardiac Rehabilitation in Special conditions

서울아산병원 심장 예방·재활 센터 남효정

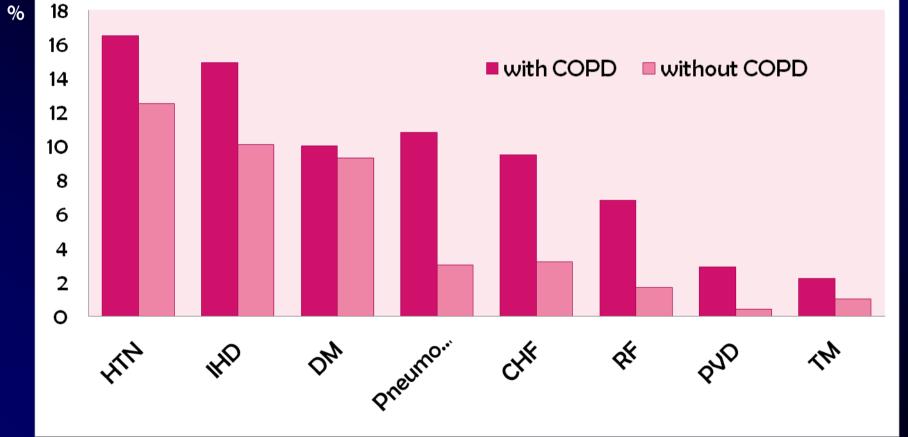
Special conditions

- 1. Pulmonary disease Patients
- 2. Women
- 3. Older Patients
- 4. Cardiac Transplantation

Special conditions

- 1. Pulmonary disease Patients
- 2. Women
- 3. Older Patier
- 4. Cardiac Tran

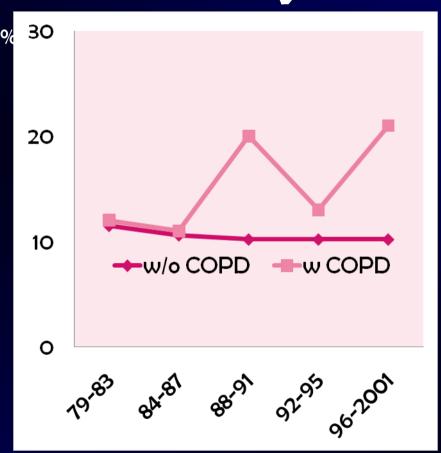
Pulmonary Disease



- Chronic cardiac diseases and COPD coexist
- CVD in COPD
 - more frequent
 - more frequent cause of death
- COPD predispose to CVD
 - Old age
 - Heavy smoker
 - Physical inactivity
 - Medications; β -agonist, steroid
 - Depression, etc

Estimated Prevalence of Hospital Discharges with Co-morbidities in patients with and without COPD

NHD\$ 1979 to 2001

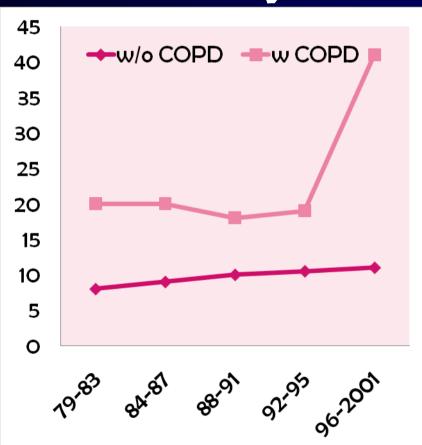


Ischemic Heart Disease with or without COPD

Hospitalizations

16 14 12 10 8 6 →w/o COPD -w COPD 4 2 0

Mortality


Congestive Heart Failure with or without COPD

Hospitalizations


%

15 →w/o COPD →w COPD 10 5 0

Mortality

Deaths rates for COPD and CVD according to gender and age

Methanism of Functional Deterioration

- Chronic Lung disease
 - Limitation of Gas exchange / Elevation of pulmonary vascular pressure
 - Dyspnea / Limitation on physical activity
 - → Dependence on others
 - → Depression/ anxiety
 - > sense "loss of control" and "exertion phobia"
 - physical inactivity
 - > muscular atrophy
 - > vicious cycle of inactivity/dyspnea

Patients Exercise Assessment

- Maximum workload
 - O2 consumption, CO2 production
- Ventilatory response
 - minute ventilation and post exercise spirometry, dead space development, ventilatory equivalent for CO2 production (VE/VCO2), arterial PCO2
- Gas exchange
 - pulse oximetry, arterial PO2

Primary Exercise Limitation	Maximum Ve/MVV	Peak HR	\$p02 (%)
Ventilatoy	> O.8	< O.8	> 90
Gas exchange	< 0.8	< 0.8	< 90
CV	< 0.8	> 0.8	> 90
Ventilatory + CV	> O.8	> O.8	> 90
Ventilatory + gas exchange	> O.8	< O.8	< 90
Gas exchange + CV	< O.8	> 0.8	< 90
Ventilatory + gas exchange + CV	> O.8	> O.8	< 90

Balance of three types of exercise

- Stretching and flexibility
 - Develop suppleness
 - Improve range of motion
 - Provide general warm-up
- Strengthening exercise
 - With dumbbells, cuff weights,

- Endurance exercise
 - Produce cardiopulmonary stress
 - Elevated heart rate and ventilation
 - Walking, rowing, swimming, water aerobics, cycling (arm or leg), stair climbing

- Initial load
 - Never destroys the patient's motivation
 - Should sufficiently low intensity can be accomplished without discomfort
 - Stationary bicycle and arm ergometer
 - Bicycle; 50% of maximum workload during exercise test (Wmax)
 - Arm; 30% of Wmax

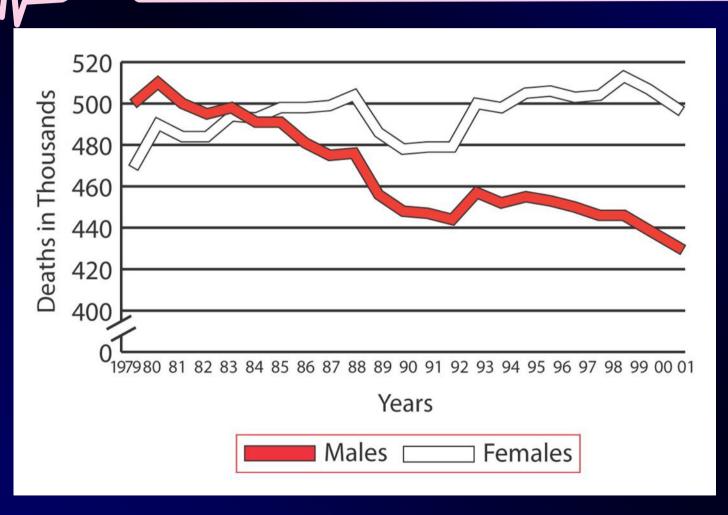
- Recommended minimum duration and frequency of endurance exercise
 - No less than 20 min
 - Three times per week

Monitoring

- PaO2 > 55 mmHg, SO2 > 88% in pulmonary patients
 - Inadequate oxygenation during exercise
 - Oxygen delivery 2L/min, nasal cannula
 - Reduce the Intensity of exercise
 - Stop exercise until re-oxygenation

Summary

- The Cardiac and pulmonary disease states often coexist
- Disabilities from both cardiac and pulmonary diseases clearly benefit from rehabilitation program
- Need to be aware of specific assessment, monitoring, rehabilitation methods.


Special conditions

- 1. Pulmonary disease Patients
- 2. Women
- 3. Older Patients
- 4. Cardiac Transplantation

Cardiovascular Disease in Women


- Leading cause of mortality in women
- Age-dependency clinical CHD
 - 1 of 8-9 women aged 45-64 yr
 - -1 of 3 women ≥ 65 yr
- 64% of women who die suddenly of CHD
 - no previous symptoms
- time of their first heart attack
 - ten years older than men

Cardiovascular Disease Mortality Trends

Age-Adjusted distribution of 10-Year CAD Risk*

NHANES III (1988-2004)

Lifetime Mortality Risks: Postmenopausal Women

Condition	% Lifetime Mortality Risk
Coronary heart disease	31.0
Breast cancer	2.8
Hip fracture	2.8
Endometrial cancer	0.7

- Only 13% of US women believe
 - heart disease and stroke are their greatest health threat

Potential Contributors: Less Fayorable Outcome of MI in Women

- Older age
- Greater co-morbidity; diabetes, hypertension
- Later arrival to hospital, delayed recognition of MI
- ↓ Use standard therapies that ↑ survival
 - Thrombolytic agent, β -blockers, aspirin
- Coronary angiography, PCI, CABG
- Referral to cardiac rehabilitation
- Post MI depression 2x ↑ women

Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women: 2007 Update

Mosca L, et al. Circulation 2007; 115:0000-0000

Clinical Recommendation

- Life Style intervention
- Major risk factor intervention
- Preventive drug intervention

Clinical Recommendation

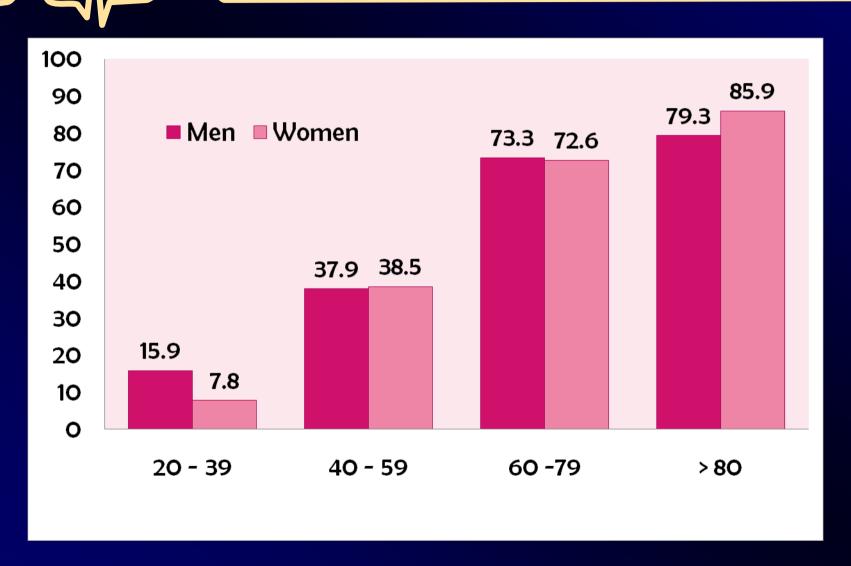
- Life Style intervention
 - Cigarette smoking cessation
 - Physical activity
 - Rehabilitation
 - Dietary intake
 - Weight maintenance/ reduction
 - Omega-3 fatty acids
 - Depression control

Clinical Recommendation

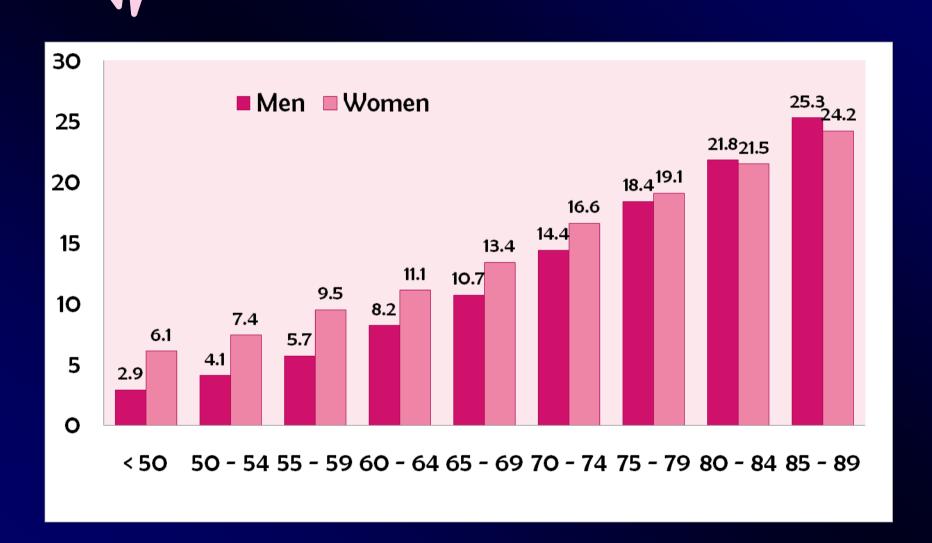
- Major risk factor intervention
 - Blood pressure
 - Lipid and lipoprotein levels
 - Diabetes mellitus
- Preventive drug intervention
 - Aspirin
 - β -blockers
 - ACE inhibitors/ARBs
 - Aldosterone blockade

Summary

- CHD is clearly the major cause of morbidity and mortality in women
- Many of the factors that place women at risk from this disease are modifiable.
- It is crucial, to educate women and their health care providers about the diagnosis, evaluation, and treatment of this disease in women.

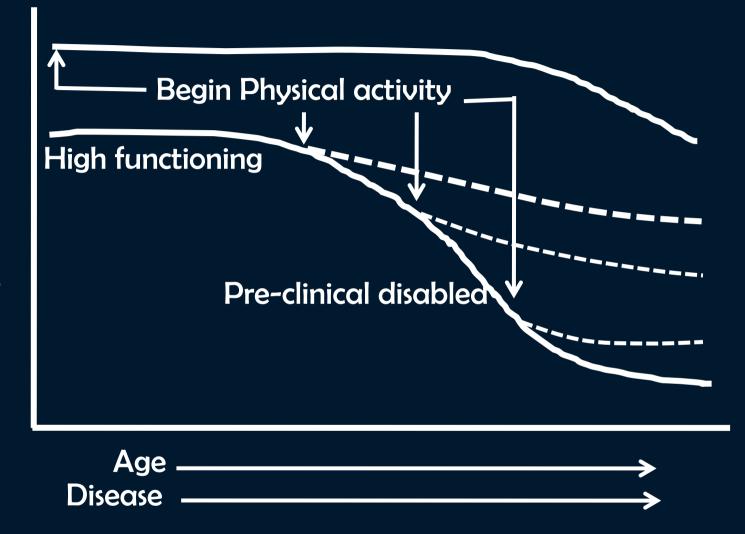

Special conditions

- 1. Pulmonary disease Patients
- 2. Women
- 3. Older Patients
- 4. Cardiac Transplantation


Older Patients

- Age
 - powerful risk factor for CV disease.
- CVD
 - 12.5 million in the U.S older than 65 years
 - major cause of death and disability in elderly
 - CHD
 - predominant cardiac problem
 - Other important causes
 - followed by hypertensive cardiovascular disease;
 valvular and pulmonary heart diseases

Prevalence of CVD



CHD Mortality

Coronary Heart Disease

- Contribute factor to increase mortality rate
 - Increased prevalence of comorbid illness
 - Frequent complications of MI
 - More extensive coronary artery disease
 - More multi-vessel disease
 - More coronary artery calcification
 - More have a prior MI

J Gerontol A Biol Sci Med Sci 2006:61:1157-66

Risk Factor Management

- Preventive approaches
 - hypertension control
 - control of hyperlipidemia
 - regular mod-intensity physical activity
 - weight reduction and control
 - dietary sodium and fat restriction
 - smoking cessation.

Exercise Training

- Consider the physiologic characteristics of aging and the superimposed limitations caused by cardiovascular disease
- individualized
- avoiding excessive fatigue or exhaustion
- limiting musculoskeletal injury by restriction of running, jumping and other high-impact activities.

Exercise training

Strength exercises

- Aim: to improve strength, balance and muscle coordination.
- Progressive resistance training of the major muscle groups
- 2-3 days per week with 2-3 sets of each exercise.

Exercise training

- Aerobic exercises:
 - Moderate intensity aerobic training like walking, ergometry or water exercises
 - reaching first a target frequency (3days/wk),
 - then duration (at least 20 min per session),
 - finally, appropriate intensity (40-60% HRR)
- Stretching, warming up and cooling down for older adults
 - should be longer and more gradual

Summary

- Elderly patients with CHD
 - Co-morbidities
- Cardiac rehabilitation services
 - enhance functional capacity
 - limit disability and dependency
 - comprehensive approaches to risk reduction can be implemented

Summary

- referral and participation of elderly
 - unacceptably low
- Elderly patients need improved access to cardiac rehabilitation services to realize the benefits of secondary prevention
 - increased numbers of elderly patients have to be referred to and participate in cardiac rehabilitation

Special conditions

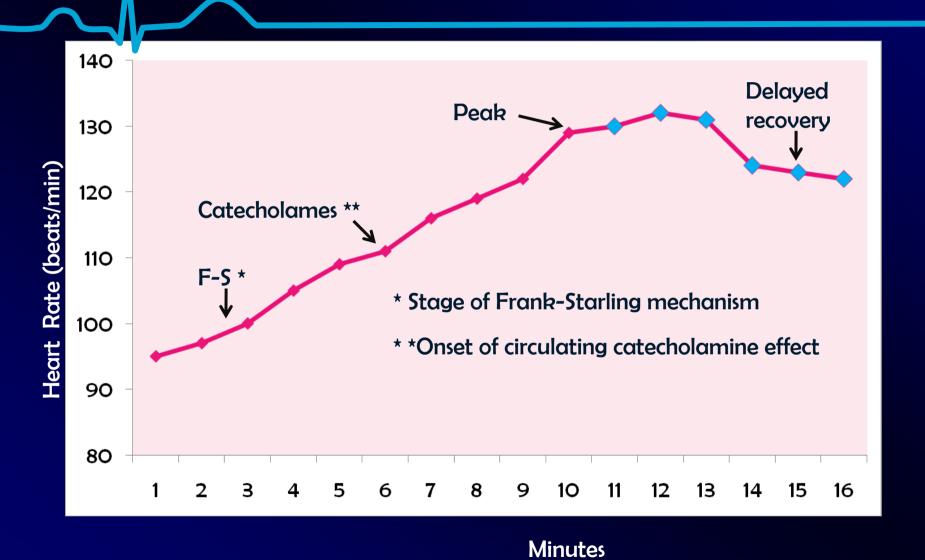
- 1. Pulmonary disease Patients
- 2. Women
- 3. Older Patients
- 4. Cardiac Transplantation

Transplantation

- Treatment of choice in the terminal stages of congestive heart failure
- Survival rate
 - -5 yr: 60%, 12 yr: 35%
 - Not only the length but also the quality of life

Transplantation

- Severe deconditioning follows months of debilitating ill health
- Need formal postsurgical rehabilitation
 - Physical exercise training
 - Prudent diet, weight control, guidance in smoking cessation, advice on the effects and side effects of medication
 - Psychological and vocational counseling


Exercise Physiology

- Normal
 - Cardiac output (CO) = HR x SV
 - CO increase 5-6x the resting value
 - Normal resting CO = 4.5-5.0 L
- How to increase CO
 - Autonomic nervous system
 - initial increase in HR (30-50 beats in 1st min)
 - Cardiac sympathetic nerves
 - SV increases gradually during exercise

Exercise Physiology of HTPL

- Lack of autonomic function
 - Denervation of the heart
 - Delayed heart rate response
 - Decreased maximal heart rate
 - Impaired CO adaptation
 - SV increases more sharply during initial exercise
 - SV is the only mechanism for increasing CO

Exercise Physiology of HTPL

Exercise Prescription

- Aerobic exercise
 - Initial goal of 20 minutes
 - 30-40 min as an optimal progression goal
 - Weight and Non-weight bearing modalities
 - Utilize moderate and high intensity intervals based on METreserve or RPE
 - 3min moderate (50-60% or RPE 11-13)
 - 1min high (75-85% or RPE 14-15)
 - Effectively increase the anaerobic threshold (AT) and VO2max more effectively

Exercise Prescription

- Resistance Training
 - Exercise to use big muscles and multiple joints
 - Surgical limitations
 - Begin with lower extremities
 - Body weight exercises are a great tool
 - Squats, lunges, wall press
 - Light hand weights and bands
 - 2sets of 12-15 reps is optimal
 - Great opportunity to incorporate stability and balance devices

Be cautious!

- Hypertension
 - Side effects of immunosuppressant cyclosporine therapy
 - Persistent response to chronic elevation of plasma norepinephrine.
- Exercise training
 - reduce catecholamine levels
 - antihypertensive effect

Summary

- Routine use of comprehensive exercise rehabilitation
 - maximizes the benefits of surgery
 - can induce a good training effect
- The prescription of exercise
 - the denervated heart's peculiar response to effort
 - perceived exertion and metabolic measurements
 - Not target heart rates for defining the training

