ACSM Metabolic Calculations

Jim Ross ES, RCEP, Wake Forest University

Purpose of Calculations

- Under steady-state conditions, volume of oxygen (VO₂) provides a measure of the energy cost of exercise
- The rate of oxygen (O₂) uptake during maximal exercise indicates the capacity for O₂ transport and utilization
- Serves as the criterion of cardiorespiratory fitness
- Provides general info about the fuels being utilized for exercise (RER)

Ways to Express VO₂

- Absolute- Liters per minute (L•min⁻¹)
 - Used to convert consumption to a rate of energy expenditure
- Relative- ml per kg body weight per min (ml•kg⁻¹•min⁻¹)
 - Used to compare VO₂ among varying body sizes
- Gross- Total consumption rate under any circumstances, either in absolute or relative
- Net- Consumption rate above resting oxygen uptake

RER and RQ

- RER-Respiratory Exchange Ratio
 - Ventilatory measurement
 - Reflects gas exchange between lungs and pulmonary blood
 - 0.7 = Fat
 - 1.0 = CHO
 - Exceeds 1.0 during heavy exercise

- RQ-Respiratory Quotient
 - Cellular Respiration
 - Equivalent to RER only under resting conditions
 - Can never exceed 1.0
 - RQ is used to estimate energy expenditure, however, when RQ is not available, assume 5 kcal •L⁻¹

Estimation of Energy Expenditure

- When you cannot measure Vo₂ directly, estimations can still be made during steady-state exercise
- Equations are based on relating mechanical work rate to their metabolic equivalents
- Equations are appropriate for general clinical and lab usage

Estimation of Energy Expenditure

- Equations can be used for:
 - Estimating or predicting energy expenditure (Weight loss)
 - Designing exercise programming to determine the exercise intensity associated with a desired level of energy expenditure

Cautionary Notes

- The intersubject variability in Vo₂ may have a SEE as high as 7%
- Appropriate for steady-state submax aerobic exercise
- Any variable that changes the metabolic efficiency results in loss of accuracy
- Assumes that machines are calibrated and used properly

Despite these caveats, metabolic equations provide a valuable tool for exercise professionals

Conversion Factors

MEMORIZE

- 1Liter = 1000 ml
- 1 Mi-h⁻¹ = 26.8meter/minut **MENORIZE** 1 Mi-h⁻¹ = 1.609 Km k 1
- 1lb of fat = 3500k-cal
- 1 MET = 3.5ml·kg-¹·min-¹
- 1 Watt = 6 kg[·]m⁻¹min⁻¹
- 1L O₂ = 5 k-cal
- 1 in = 0.0254 meters

Walking $(1.9 \rightarrow 3.7 \text{ Mi-h}^{-1})$ $(3.05 \rightarrow 5.95 \text{ Km-h}^{-1})$

• $VO_2 \text{ ml·kg-1·min-1} = (0.1 \cdot S) + (1.8 \cdot S \cdot G) + 3.5$ Horiz. Vert. Rest

Speed= speed in meters/min (convert if needed) Grade= grade in decimal form (5% is 0.05), if 0% grade, no vert. R= resting component All answers are reported in ml⁻kg⁻¹⁻min⁻¹ Walking $VO_2 \text{ ml·kg-1·min-1} = (0.1 \cdot S) + (1.8 \cdot S \cdot G) + 3.5$ Horiz. Vert. Rest Calculate Vo₂ in ml/kg/min 2.0 mi-h⁻¹ (2.0 x <u>1.609</u>=3.22 Km-h⁻¹) 10% grade ■ 2.0 X 26.8 = 53.6 m-min **53.6** X $\cdot 1 = 5.36 \text{ ml} \text{ kg} - 1 \text{ min} - 1 \text{ (H)}$ **1.8** X 53.6 X .10 = 9.65 ml kg⁻¹ min⁻¹ (V) **a** 3.5 ml kg-1 min-1 (R) **5**.36 + **9**.65 + **3**.5 = **18**.5 ml kg⁻¹ min⁻¹

TABLE D-3. Approximate Energy Requirements in METs for Horizontal and Grade Walking

	mi∙h⁻¹	1.7	2.0	2.5	3.0	3.4	3.75	
% Grade	m•min ^{−1}	45.6	53.6	67.0	80.4	91.2	100.5	
0		2.3	2.5	2.9	3.3	3.6	3.9	
2.5		2.9	3.2	3.8	4.3	4.8	5.2	
5.0		3.5	3.9	4.6	5.4	5.9	6.5	
7.5		4.1	4.6	5.5	6.4	7.1	7.8	
10.0		4.6	5.3	6.3	7.4	8.3	9.1	
12.5		5.2	6.0	7.2	8.5	9.5	10.4	
15.0		5.8	6.6	8.1	9.5	10.6	11.7	
17.5		6.4	7.3	8.9	10.5	11.8	12.9	
20.0		7.0	8.0	9.8	11.6	13.0	14.2	
22.5		7.6	8.7	10.6	12.6	14.2	15.5	
25.0		8.2	9.4	11.5	13.6	15.3	16.8	

Running (>5.0mph)

■ VO2 ml·kg-¹·min-¹ = $(0.2 \bullet S) + (0.9 \bullet S \bullet G) + 3.5$

Horizontal Vertical Rest

All variables are the same for walking

Running VO_2 ml·kg-1·min-1 = (0.2 •S) + (0.9 •S •G) + 3.5HorizontalVerticalRest

Example Calculate Vo₂ in ml·kg-1·min-1 6.0 mi-h⁻¹ (9.65 Km-h⁻¹) 10% grade

■ 6.0 X 26.8 = 160.8 m-min

= 160.8 X . 2 = 32.16 ml/kg/min (H)

• 0.9 X 160.8 X .10 = 14.47 ml·kg-¹·min-¹ (V)

3.5 ml·kg-¹·min-¹(R)

32.16 + **14.47** + **3.5** = **50.13** ml·kg-¹·min-¹

S TABLE D-4. Approximate Energy Requirements in METs for Horizontal and Uphill Jogging/Running

	mi·h ⁻¹	5	6	7	7.5	8	9	10
% Grade	m•min ⁻¹	134	161	188	201	214	241	268
0		8.6	10.2	11.7	12.5	13.3	14.8	16.3
2.5		9.5	11.2	12.9	13.8	14.7	16.3	18.0
5.0		10.3	12.3	14.1	15.1	16.1	17.9	19.7
7.5		11.2	13.3	15.3	16.4	17.4	19.4	
10.0		12.0	14.3	16.5	17.7	18.8		
12.5		12.9	15.4	17.7	19.0			
15.0		13.8	16.4	18.9				

Leg Ergometry

- VO2= 1.8 (Work rate/Mass in kg) + 7
- M = mass of subject NOT resistance
- Work rate is is reported in watts, convert when necessary
 - 1 W = 6 kg·meters⁻¹ ·min⁻¹
 - Power = R D f
 - R= resistance in kg
 - D = distance of the fly wheel
 - 6m for Monark
 - 3m for Tunturi
 - F = frequency in rpm

NOTE: VO₂ is reported as mlkg-1 min-1

R X D X F = Power: VO2 = 1.8 (Work rate/Mass in kg) + 3.5 ml·kg-1·min-1 + 3.5 ml·kg-1·min-1

Example R=2 kg.meters D= 6 meters (Monark) F= 50 reps $(Power) = 2 X 6 X 50 = 600 \text{ kg} \cdot \text{m} \cdot \text{min}^{-1}$ Mass = 70 kg **Work rate** = 600 kg.m.min⁻¹ $1.8 X(600/70) + 7 = 22.42 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ Convert to METs- 22.42/3.5 = 6.40 METs

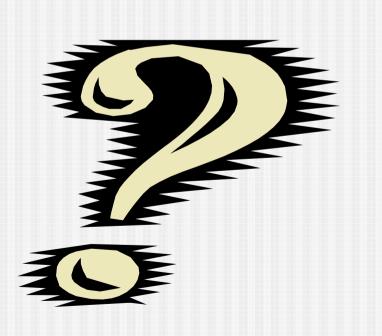
TABLE D-5. Approximate Energy Expenditure in METs **During Leg Cycle Ergometry**

		Power Output (kg·m·min ⁻ and Watts)							
Body Wt.		300	450	600	750	900	1050	1200 (kg·m·min ⁻¹)	
kg	lb	50		1002 St. 14	100		150	175	200 (Watts)
50	110	5.1	6.6	8.2	9.7	11.3	12.8	14.3	
60	132	4.6	5.9	7.1	8.4	9.7	11.0	12.3	
70	154	4.2	5.3	6.4	7.5	8.6	9.7	10.8	
80	176	3.9	4.9	5.9	6.8	7.8	8.8	9.7	
90	198	3.7	4.6	5.4	6.3	7.1	8.0	8.9	
100	220	3.5	4.3	5.1	5.9	6.6	7.4	8.2	

Denne Outent (los no min-1 and Watta)

Stepping Ergometry

■ $VO2 = (0.2 \bullet f) + (1.33 \bullet 1.8 \bullet f \bullet h) + 3.5 ml kg - 1.1 min - 1$


F=stepping rate
H=height of step in meters

NOTE: VO₂ is reported as ml·kg-¹·min-¹

Stepping Ergometry VO2 ml·kg-¹·min-¹ = $(0.2 \bullet f) + (1.33 \bullet 1.8 \bullet f)$ •h) + 3.5 ml·kg-¹·min-¹

Example Frequency = 20 steps/min Height = .254 meters (10 inches)

Step 1 $(.2 \times 20) = 4$ Step 2 $(1.33 \times 1.8 \times 20 \times .254) = 12.16$ Step 3 (Add resting value-3.5) Step 4 - (sum) = 19.66 ml·kg-1·min-1 METs= 5.61 Questions

