Pulmonary Disorders and Pulmonary Rehabilitation

Chris Garvey FNP, MSN, MPA, FACVPR
Manager, Seton Medical Center Pulmonary and Cardiac Rehabilitation
Nurse Practitioner, University of California San Francisco
Sleep Disorders, Pulmonary Division
Overview

- Chronic Lung Diseases
 - Chronic Obstructive Lung Disease (COPD)
 - Asthma
 - Mycobacterium Tuberculosis
 - Restrictive Lung Diseases

- Pulmonary Rehabilitation
 - Key Components
 - Exercise Guidelines
 - Education on Disease Self-management
 - Evidence Based Guidelines

- Resources
COPD Definition and Incidence

- Airflow limitation – not fully reversible
 - Persistent, progressive dyspnea and chronic cough
 - History of smoking or particulate exposure
 - Significant systemic abnormalities
- WHO: 340 million with COPD worldwide
 - National COPD prevalence ranges: 4-20%
 - 70% of patients are under 65 years old
- 6th leading cause of death worldwide
 - Will be 4th leading cause by 2030
 - Worldwide deaths will increase 30% in 10 years
- Often undiagnosed and untreated until advanced
 - Nearly 80% undiagnosed and untreated

2 NHANES III, Mannino et al, MMWR 2002;51:1-16
COPD in Korea

- **Korean National Health & Nutrition Examination Survey**
 - 9,243 adults over 18 years: COPD prevalence based on spirometry in those over 45 years old: 17%;

- **Asia Pacific Round Table Group**: Korea COPD prevalence based on spirometry in persons over 45 years: 25.8%

 Asia Pacific Roundtable Group, Respirology 2003;8:192-198

- **Korean Health and Genome Study**:
 - 8140 without pulmonary diagnosis
 - **Undiagnosed airflow obstruction**:
 - 12% in men, 3.5% in women
 - Airflow obstruction common in men with respiratory symptoms - chronic cough, chronic sputum, wheezing, dyspnea, and smoking

Characteristics Asthma and COPD

ASTHMA
- Sensitizing agent (e.g., allergen)
- Mast Cell
- Eosinophil
- CD4+ T Lymphocyte

COPD
- Noxious irritant e.g., cigarette smoke
- Macrophage
- Neutrophil
- CD8+ T Lymphocyte

Reversible (Improvement) on Spirometry after bronchodilator
- Variable symptoms
- Inhaled corticosteroids decrease inflammation

Not fully reversible on spirometry Persistent symptoms with exacerbations
- Long acting bronchodilators reduce dyspnea, hyperinflation

Modified from Barnes, 1998.
Diagnosis of COPD

SYMPTOMS
- cough
- sputum
- dyspnea

EXPOSURE TO RISK FACTORS
- tobacco
- occupational dust and chemicals
- indoor/outdoor pollution

SPIROMETRY

Diagnosis of COPD
Hyperinflation and Air Trapping

Low, Flattened Diaphragm

Increased A-P Diameter

Air Trapping
COPD - Abnormalities

Pulmonary Impairments:
- Hyperinflation – trapped air causes dyspnea
 - Increases with exercise
- Impaired ventilation – hypoxia, hypercapnea

Secondary Impairments:
- Skeletal muscle dysfunction
- Underweight or overweight
- Osteoporosis
- Depression, anxiety disorders
- Heart disease
 - Heart failure, Pulmonary hypertension
- Anemia

Cross section thigh
Undiagnosed Airflow Limitation in Cardiovascular Disease

- Airflow limitation in hospitalized patients
 - 17% in without cardiovascular disease (CVD)
 - 19% with CVD
 - 34% with coronary artery disease (p <0.5)

- Under-diagnosis of airflow limitation range: 60% - 87%

- Left ventricular (LV) structure and function measured by MRI in 2816 persons 45-84 years old
 - 10% increase in COPD linearly related to reduction in LV end-diastolic volume, stroke volume, cardiac output
 - Greater magnitude among current smokers

- COPD may be a risk factor for CVD
Hospitalization and Death in COPD

- 2386 COPD patients – 50% men, 71% smokers
 - Mean follow-up: 12 years
 - 22% had hospitalization for COPD
 - Risks for hospitalization: older age, CVD, asthma, low physical activity, severe COPD
- 60% died during follow-up
 - Risks for death: older age, CVD, diabetes, low physical activity, more severe COPD

- 341 COPD patients followed for mean 1.1 year
 - 92% men, 63% readmitted, 29% died during follow-up
 - Readmission risk factors: low FEV\textsubscript{1}, low PO\textsubscript{2}, low physical activity, low quality of life

Can We Reverse COPD?

- BODE Index: Impacts survival and hospitalizations
 - Body Mass Index > 21
 - Obstruction: $> \text{Forced Expiratory Volume in one second}$
 - Dyspnea: $< \text{Medical Research Council dyspnea scale}$
 - Exercise: $> 6 \text{ minute walk distance}$

- Pulmonary Rehabilitation improves dyspnea & exercise
 http://content.nejm.org/cgi/content/abstract/350/10/1005

- Rehabilitation to reverse muscle dysfunction
 - Quitting smoking reduces mortality, loss of lung function
 - Reduce hyperinflation - exercise, bronchodilators
 - Treat hypoxemia with oxygen
 - Limit exacerbations with education and exercise
 - Improve weight
GOLD Stages of Therapy

<table>
<thead>
<tr>
<th>Stage</th>
<th>FEV₁/FVC < 70%</th>
<th>All stages: Smoking cessation; avoidance of risk factors; influenza vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I:</td>
<td>FEV₁ > 80%</td>
<td>Add short-acting bronchodilator when needed</td>
</tr>
<tr>
<td>Stage II:</td>
<td>FEV₁ > 50 < 80%</td>
<td>Add regular treatment with one or more long-acting bronchodilators; add rehabilitation</td>
</tr>
<tr>
<td>Stage III:</td>
<td>FEV₁ > 30 < 50%</td>
<td>Add inhaled glucocorticosteroids if repeated exacerbations</td>
</tr>
<tr>
<td>Stage IV:</td>
<td>FEV₁ > 30</td>
<td>Add long-term oxygen if chronic respiratory failure; consider surgical treatments</td>
</tr>
</tbody>
</table>
Restrictive Ventilatory Defect

- Mycobacterium Tuberculosis
 - Pulmonary complications
 - Cavitary lesion, miliary TB

- Interstitial Lung Disease:
 - Inflammation leading to scaring
 - Pulmonary Fibrosis, scleroderma, etc.

- Chest wall abnormalities
 - Kyphosis, kyphoscoliosis

Diagnosis: History and physical, Chest X ray, Pulmonary function test (PFT), Chest CT for interstitial lung disease
Findings: Decreased forced vital capacity (FVC), Decreased total lung capacity (TLC) normal FEV₁ / FVC

Management: disease-focused care
Pulmonary Rehabilitation improves function, quality of life, dyspnea
Rationale for PR in Chronic Lung Disease

Impairment in ventilation; exchange of oxygen and carbon dioxide

Exacerbations* – severe flares in symptoms

Anxiety*
Depression*
Fear

Knowledge deficits*

Cardiovascular impairments

Skeletal muscle wasting*
Reduced strength*
Reduced endurance*

Exercise Impairment Symptoms
Decreased Participation

Anemia

Nutritional impairment

*Pulmonary Rehabilitation – strong evidence of improvement
Adapted from Rochester 2008
If exposure to noxious agents stops, disease progression slows.

Lung Function (FEV₁ (% of Value at Age 25))

- Never smoked or not susceptible to smoke
- Smoked regularly and susceptible to its effects
- Stopped smoking at 45
- Stopped smoking at 65

<table>
<thead>
<tr>
<th>Medication</th>
<th>FEV₁</th>
<th>SOB</th>
<th>QOL</th>
<th>Exacerbations</th>
<th>Exercise</th>
<th>Side effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theophylline</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>Some</td>
</tr>
<tr>
<td>Inhaled steroids</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Some</td>
</tr>
<tr>
<td>Long Acting Beta Agonists</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Minimal</td>
</tr>
<tr>
<td>Tiotropium</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Minimal</td>
</tr>
<tr>
<td>Albuterol</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>Some</td>
</tr>
<tr>
<td>Ipratropium</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Some</td>
</tr>
<tr>
<td>Long Acting Beta Agonists</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Minimal</td>
</tr>
<tr>
<td>Theophylline</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Important</td>
</tr>
</tbody>
</table>

Side effects:
- **Important:** Important side effects that should be considered.
- **Some:** Side effects that may be experienced but are not necessarily important.
- **Minimal:** Minimal side effects that are typically not significant.
Evidence-based, multidisciplinary, comprehensive program

- Chronic respiratory diseases
- Symptomatic, decreased daily activities
- Integrated into individualized treatment
- Designed to optimize functional status
 - Increase participation
 - Reduce healthcare costs
 - Reduce symptoms

Stabilizing or reversing systemic manifestations

Nici, Garvey, et al. ATS/ERS Statement on PR Am J Respir Crit Care Med V173. Pp 1390-413, 2006,
Pulmonary Rehabilitation

- Physician - supervised program
 - Supervised exercise
 - Education – disease self-management training
 - Outcome assessment

- Goal: Improvement in:
 - Functional capacity, long term exercise
 - Maximum potential in self care
 - Long term use of treatments
 - Quality of life
 - Reduce hospitalizations

- Chronic, stable, symptomatic lung disease
- Physically and mentally able to participate
Pulmonary Rehabilitation Setting

- Multidisciplinary Team:
 - Medical Director
 - May include nurses, physical therapists, respiratory therapists, social workers, dietitians

- Progressive exercise: aerobic and resistance
 - 30 minutes of moderate intensity physical activity such as walking five or more days per week

Am Fam Physician 2008;77:8;1136-1138.

- Clinical monitoring: oxygen saturation, dyspnea, heart rate, blood pressure, blood glucose in diabetes

- Evaluate patient’s progress related to rehabilitation

- Outcomes - pre and post Pulmonary Rehabilitation
 - Objective, patient-centered outcomes
 - Functional capacity, dyspnea, quality of life
Pulmonary Rehabilitation Education

- Dyspnea control – pursed lip breathing
- Prevention, management of exacerbations
- Energy conservation – Activities of Daily Living
- Proper use of inhaled medications
- Control of anxiety, panic, depression
- Oxygen needs, safety, monitoring, portability
- Secretion clearance techniques, devices
- Nutrition counseling
- Home exercise program and guidelines
- Disease progression, end of life planning
Dyspnea Screening / Monitoring

MMRC Dyspnea Scale
- **0:** I only get breathless with strenuous exercise
- **1:** I get short of breath when hurrying on level ground or walking up a slight hill
- **2:** On level ground, I walk slower than people of the same age because of breathlessness, or have to stop for breath when walking at my own pace
- **3:** I stop for breath after walking about 100 yards or after a few minutes on level ground
- **4:** I am too breathless to leave the house or I am breathless when dressing

Modified Borg Scale
- **0 No Breathlessness at all**
- **1 Very Slight**
- **2 Slight Breathlessness**
- **3 Moderate**
- **4 Somewhat Severe**
- **5 Severe Breathlessness**
- **6**
- **7 Very severe breathlessness**
- **8**
- **9 Very very severe**
- **10 Maximum**

Keep “shortness of breath” 3 – 4 with exercise
Quality of Life Questionnaires

- **St George's Respiratory Questionnaire (SGRQ)**

 sgrq@sgul.ac.uk

- **Chronic Respiratory Disease Questionnaire (CRQ)**

 1-877-836-9235, Fax: 905-540-8019 Email: orcip@mcmast.ca

- **Medical Outcomes Study Short Form 36 (SF-36)**

Functional Capacity Testing

- **6 Minute Walk Test**

 - Self-paced, reliable, correlates with VO₂ peak in moderate COPD

- **Incremental Shuttle Walk Test**

 - Externally paced, reliable, correlates with VO₂ peak in mod COPD

- **Cardiopulmonary Exercise Test**

 - Direct measure of O₂, CO₂, minute ventilation, tidal volume, respiratory rate on breath-by-breath basis

Outcomes of Pulmonary Rehabilitation Randomized Controlled Trials

- Increase in sub-maximal exercise\(^1, 3, 4, 5, 7, 9\)
- Improvement in dyspnea\(^1, 2, 3, 4, 5\)
- Improvement in health status\(^4, 7, 8, 9\)
- Fewer hospital days and primary care visits\(^7\)
- Enhanced psychological well being, quality of life, depression, anxiety\(^7, 13, 14\)
 cognitive function\(^4\)

Oxygen For Hypoxemia

- Oxygen improves survival, exercise capacity, sleep quality and cognitive performance in hypoxemia
- Promote portable oxygen systems for ambulation
- Address air travel with hypoxemia
 - Ambient oxygen concentration - 21% at sea level
 - Ambient oxygen concentration - 15% in aircraft
Clinical Resources

- Global Initiative for COPD (GOLD) http://www.goldcopd.com
- ACCP / AACVPR Evidence based guidelines http://chestjournal.chestpubs.org/content/131/5_suppl/4S.full.pdf+html
Patient Resources

- American College of Chest Physicians: http://www.chestnet.org/patients/guides/
- Travel: aeromedix.com breathineasy.com/
- Oxygen portableoxygen.org, homeoxygen.org
Pulmonary Rehabilitation – Where East Meets West

- Haeso cheonsik ‘cough and dyspnea’
 - Could be COPD, asthma, heart failure, other diseases
 - Considered part of normal aging process

- COPD is not a well know term by public or medical community

- 36% of severe – very severe COPD patients do not have a physician diagnosis of COPD
Pulmonary Rehabilitation – Where East Meets West

- Need for multifaceted approach to improve disease prevention and effective management:
 - Improve awareness of COPD prevalence
 - Facilitate accurate diagnosis of COPD
 - Health care policies to reduce risk factors for COPD
 - Wider use of evidence based guidelines

- What is My Role as a Clinician?
 - Assess and monitor:
 - Risk factor exposure
 - Symptom, activity level and changes
 - Accurate diagnosis based on spirometry
 - Medication adherence and inhaler technique
 - Exacerbations