Angioplasty Summit TCTAP2010 4/29/2010

#5 Atherosclerosis "From Basic to Translational Research"

Angiogenic and Cardioprotective Therapy for PAD and MI

Issei Komuro, M.D. Osaka University Graduate School of Medicine Suita, Japan

Angiogenic Therapy for PAD

Arteriosclerosis Obliterance (ASO)

etiology – atherosclerosis more than 2% in people older than 65 yr ~1/2 million in Japan

Buerger Disease (TAO)

TAO

etiology is unknown male, smoking several thousands patients in Japan

normal

Therapeutic Angiogenesis

Table 2 Phase 2 and 3 angiogenesis trials

Trial	Therapeutic agent	Disease target	n	Endpoint	Results ^a	Reference
VIVA trial	Recombinant VEGF protein	CHD	178	ETT ^b at 60 d	Negative	97
FIRST trial	Recombinant FGF-2 protein	CHD	337	ETT at 90 d	Negative	98
TRAFFIC trial	Recombinant FGF-2 protein	PAOD	190	ETT at 90 d	Positive	99
GM-CSF trial	Recombinant GM-CSF protein	CHD	21	Invasive collateral flow	Positive	100
				index at 2 weeks		
AGENT trial	Adenovirus-FGF-4	CHD	79	ETT at 4 weeks	Positivec	101
VEGF peripheral vascular	Adenovirus-VEGF ₁₆₅	PAOD	54	Increased vascularity in	Positive	102
disease trial	Plasmid/liposome VEGF165			angiography at 3 months		
KAT trial	Adenovirus-VEGF ₁₆₅	CHD	103	Improved myocardial	Positive (adenovirus group only)	103
	Plasmid/liposomeVEGF165			perfusion at 6 months		
REVASC trial (Biobypass-CAD)	Adenovirus-VEGF121	CHD	67	Time to 1 mm ST segment	Positive	104
				depression on ETT at 26 weeks		
RAVE trial (Biobypass-PAD)	Adenovirus VEGF121	PAOD	105	Peak walking time at 12 weeks	Negative	105
Euroinject One Trial	Plasmid VEGF165	CHD	74	Improved myocardial	Negatived	106
				perfusion at 3 months	onder Practices	

CHD, coronary heart disease; PAOD, peripheral vascular disease. ^aEfficacy measured as the study protocol-defined primary or secondary endpoint. ^bETT, exercise tolerance test. ^cOnly one dose-group showed positive results. ^dPositive results were obtained after excluding results from two of the six study centers where patient recruitment might have been a confounding issue.

Endothelial progenitor cells (EPC)

EPC is produced in bone marrow

Asahara et al Science 1997

Results of clinical trial using BM-MNC

BM-MNC implantation improves ABI, pain free walking distance, tissue O2 and ulcers.

Tateishi-Y E et al. Lancet 2002

Neovascular formation is induced by PB-MNC as well as BM-MNC

Collect PB-MNC by cell sorter

PB-MNC therapy is better than BM-MNC therapy

1 less risk 1/2 ASO Pts have CAD

no general anesthesia no bone marrow aspiration

- 2 no anemia 800ml BM vs 10ml blood
- 3 less expensive \$5000 vs \$0

Collect PB-MNC by centrifugation

Injection of PB-MNC into ischemic skeletal muscle

Casel 70F, ASO

Before

After PB-MNC implant

Minamino et al. Lancet 2002

After Implant of PB-MNC

Minamino et al. Lancet 2002

O

EPC may not be necessary for BM-MNC-induced neovascular formation

Division of Cardiovascular Science and Medicine Chiba University Graduate School of Medicine

Regenerated skeletal muscle produces IL-1 β and VEGF

Immunohistochemistry

IL-1beta

VEGF

Scale bar: 100µm

AJP 2003,163:1417

2010/4/29

Tateno et al. Circ Res 2004

Division of Cardiovascular Science and Medicine Chiba University Graduate School of Medicine

19

PB-MNC activate satellite cells

Immunohistochemistry, N-CAM

2010/4/29

Tateno et al. Circ Res 2004

Division of Cardiovascular Science and Medicine Chiba University Graduate School of Medicine

20

Mononuclear cells stimulate expression of growth factors in skeletal muscle

Protection assay of myotube RNA

Skeletal muscle regeneration is necessary for PB-MNC-induced angiogenesis

Evaluation of limb ischemia by ²⁰¹TICI

before after 2010/4/29

Cardiac ischemia is improved by implantation of PB-MNCs into ischemic limbs

Cardiac ischemia is improved by implantation of PB-MNCs into ischemic limbs

G-CSF Therapy for Myocardial Infarction

Mechanisms of G-CSF-induced prevention of LV remodeling after MI

G-CSF prevents LV remodeling after MI by protecting CMs not by inducing regeneration.

G-CSF

BMC

Effects of G-CSF on swine hearts after MI

2010/4/29

Trial profile

LAD=left anterior descending coronary artery; PCI=percutaneous coronary intervention; SPECT= single-photon emission computed tomography; UAP=unstable angina pectoris; CAG=coronary angiography

Effects of G-CSF on myocardial perfusion after AMI (^{99m}Tc-tetrofosmin SPECT)

Ischemic area

comparison between 4 days and 6 months after MI

Changes of EF

comparison between 4 days and 6 months after MI

Mechanisms of Epo-induced cardioprotection

Acknowlegdment

Chiba University Komuro's Lab

Angiogenesis T Minamino K Tateno J-i Nishi M Orimo T Kunieda

G-CSF N Sano M Harada H Myauchi H Takano H Toko Y Kuwabara M Otsuka K Ueda

Y Qin H Hasegawa K Iwanaga Y Niitsuma

CSC

S Okada

T Nagai K Matsuur H Wada T Oyama Y Mikami H Takahas CM differentiation I Shiojima W Zhu H Ikeda A Naito AT1/Cardiac develop H Akazawa N Yasuda K Itoh R Yamamoto DN STAT3 TG Osaka Univ K Yamauchi-Takihara K Kunisada $IL-1\beta KO$ Univ of Tokyo **Y** Iwakura