Challenges in LM PCI *Decision-making process for stenting*

Young-Hak Kim, MD, PhD,

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

CardioVascular Research Foundation

Upgrade of Recommendation for PCI at Unprotected Left Main Stenosis

Class IIb

 PCI of the left main coronary artery with stents as an alternative to CABG may be considered in patients with anatomic conditions that are associated with a low risk of PCI procedural complications and clinical conditions that predict an increased risk of adverse surgical outcomes.^{*21,138,139} (Level of Evidence: B) New recommendation

Stenting is relatively more favorable for

- Patients with isolated ULMCA lesions or 1-vessel disease,
- Patients with ostial or mid ULMCA,
- patients with factors for high-risk CABG.

CABG may be relatively more favorable for

- Patients with ULMCA plus multivessel disease,
- Distal/bifurcation ULMCA lesions, or
- Low surgical risk with a good chance of technical success.

Circulation, 2009 NOV

Still challenging in your decision-making

Treat or not ?

- PCI vs. CABG ?
- Lesion preparation ?
- Stent type
- Stent optimization

Methods to help you make a decision in the Cath lab

Angiography
Intravascular ultrasound
Fractional flow reserve

Angiography

- The first step to determine the patient's need of revascularization
- A basis to decide your treatment plan between stenting vs. CABG
- Remains a standard imaging modality during coronary stenting

Syntax score (newly developed system)

takes into account the heterogeneity of coronary *angiographic complexity* based on the lesion's characteristics .

Can be used to (1) predict long-term outcomes and (2) help your decision-making

Distribution of SYNTAX Score Non-normal distribution

Distribution of SYNTAX Score Comparison with the SYNTAX Trial

SYNTAX score tertiles in SYNTAX Study

≤ 22
> 22 and ≤ 32
> 32

SYNTAX score tertiles in MAIN-COMPARE

≤ 23
> 23 and ≤ 36
> 36

Cardio Vascular Research Foundation

Discrimination and Calibration For Death, MI, Stroke

	Discrimination		Calibration
Model	C-index (95% CI)	Akaike Information Criterion	Slope of the Linear Predictor
Overall patients			
SYNTAX score	0.59 (0.55-0.64)	1993.9	1.12
EuroSCORE	0.67 (0.62-0.71)	1949.6	1.02
SYNTAX score + EuroSCORE	0.68 (0.63-0.72)	1948.5	1.00
PCI patients			
SYNTAX score	0.63 (0.57-0.70)	765.4	1.07
EuroSCORE	0.64 (0.56-0.72)	752.5	1.06
SYNTAX score + EuroSCORE	0.67 (0.59-0.74)	750.2	1.02
CABG patients			
SYNTAX score	0.53 (0.47-0.59)	1040.2	0.78
EuroSCORE	0.67 (0.61-0.73)	1010.7	0.99
SYNTAX score + EuroSCORE	0.68 (0.62-0.73)	1012.7	0.99

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Discrimination and Calibration For Death, MI, Stroke, TVR

	Discrimination		Calibration
Model	C-index (95% CI)	Akaike Information Criterion	Slope of the Linear Predictor
Overall patients			
SYNTAX score	0.53 (0.48-0.55)	3511.0	0.93
EuroSCORE	0.57 (0.53-0.60)	3493.9	1.09
SYNTAX score + EuroSCORE	0.57 (0.53-0.60)	3495.7	1.02
PCI patients			
SYNTAX score	0.57 (0.52-0.61)	1874.3	1.00
EuroSCORE	0.53 (0.48-0.58)	1876.5	1.16
SYNTAX score + EuroSCORE	0.57 (0.52-0.61)	1874.6	0.97
CABG patients			
SYNTAX score	0.51 (0.46-0.57)	1301.3	0.89
EuroSCORE	0.64 (0.58-0.69)	1277.2	1.05
SYNTAX score + EuroSCORE	0.64 (0.58-0.69)	1279.1	1.01

UNIVERSITY OF ULSAN

Stratified According to Stent Type For Death, MI, Stroke

	Discrimination		Calibration
Model	C-index (95% CI)	Akaike Information Criterion	Slope of the Linear Predictor
PCI patients receiving BMS			
SYNTAX score	0.61 (0.50-0.71)	163.7	0.81
EuroSCORE	0.52 (0.36-0.69)	164.1	0.41
SYNTAX score & EuroSCORE	0.59 (0.46-0.72)	165.3	0.46
PCI patients receiving DES			
SYNTAX score	0.66 (0.58-0.74)	532.3	1.15
EuroSCORE	0.68 (0.60-0.77)	517.5	1.05
SYNTAX score & EuroSCORE	0.71 (0.63-0.79)	515.7	0.96

Stratified According to Stent Type For Death, MI, Stroke, TVR

	Discrimination		Calibration
Model	C-index (95% CI)	Akaike Information Criterion	Slope of the Linear Predictor
PCI patients receiving BMS			
SYNTAX score	0.48 (0.40-0.56)	374.9	0.34
EuroSCORE	0.53 (0.42-0.56)	373.6	1.35
SYNTAX score & EuroSCORE	0.53 (0.42-0.63)	375.5	0.59
PCI patients receiving DES			
SYNTAX score	0.60 (0.55-0.65)	1333.4	1.09
EuroSCORE	0.53 (0.47-0.58)	1340.1	0.88
SYNTAX score & EuroSCORE	0.60 (0.55-0.65)	1334.8	0.97

Death, MI, Stroke

- SYNTAX score was weakly predictive of a composite of safety endpoints, in patients undergoing PCI.
- However, the SYNTAX score lost the predictive ability for patients undergoing CABG.

Death, MI, Stroke, TVR

- Neither the SYNTAX score nor the EuroSCORE showed good discriminatory power.
- In patients treated with DES, the predictabilities of events were improved by combination of SYNTAX score and EuroSCORE.

Lesion assessment
Selection of PCI technique
Selection of appropriate device
Procedural optimization
Assessment of DES failures

We can treat the LM disease in a case of MLA < 6.0 mm^2 ...

Prediction of FFR (0.75) with IVUS parameter

CardioVascular Research Foundation

Jasti V et al. Circulation 2004;110:2831

Plaque Characterization

Lesion preparation : need of rotablation, debulking
Drug : need of IIb/IIIa, aggressive antiplatelets

Fibrous plaque

Plaque rupture

Thrombi

Calcification

Courtesy of Dr. Gary S. Mintz

Goal of LM Stent Area 2 9 mm²

"Optimal" SCA and Restenosis

Goal of LAD & LCX Stent Area <u>> 5 mm²</u>

"Optimal" SCA and Restenosis

Angiography and IVUS Lesion-specific

Single	 Normal ostial LCX with MEDINA 1.1.0. or 1.0.0.
stent	 Small LCX with < 2.5 mm in diameter
	 Ostial LCX area ≥ 4 mm² by IVUS
	Diminutive LCX
	 Normal or focal disease in distal LCX
Two	 Diseased LCX with MEDINA 1.1.1., 1.0.1., or 0.1.1
stent	 Large LCX with ≥ 2.5 mm in diameter
	 Ostial LCX area < 4 mm² by IVUS
	 Diseased left dominant coronary system
	 Concomitant diffuse disease in distal LCX
Park SJ,	Kim YH. Colombo A, Issam D. Moussa et al. Textbook of Bifurcation Stenting

CardioVascular Research Foundation

COLLEGE MEDICINE

Medical Center

Assessment of ischemia in LM and side branch

Cardio Vascular Research Foundation

LM Bifurcation Treated with Cross-over

13 Pd mean

0.91

RESET

1,00

0.90 0,80

0,60 0,50 0.40 21.51 CURSOR

0.30 0.20

34 35

But, LM Stenoses are rarely isolated LM ischemia cannot be evaluated well with FFR

Nothing is complete alone.

 We still need an integrated approach with clinical manifestation, angiography, IVUS and FFR in making your decision for unprotected LM stenosis.

 We need further researches to test the interrelationship across the diagnostic devices.

