Reduction of Thrombus: Local vs. Systemic GPI Infusion

Mun K. Hong, MD, FACC, FSCAI

Director, Cardiac Catheterization Laboratory and

Interventional Cardiology

St. Luke's-Roosevelt Hospital Center

New York, New York

Reduction of Thrombus: Upstream Systemic PLUS Local GPI Infusion

Pros and Cons of Local GPI Delivery

- Pros
 - Higher local concentration
 - More effective thrombus dissolution
 - Improved microvascular circulation

- Cons
 - Arrhythmia
 - Systemic effect
 - Invasive and delayed therapy

Clinical outcome!

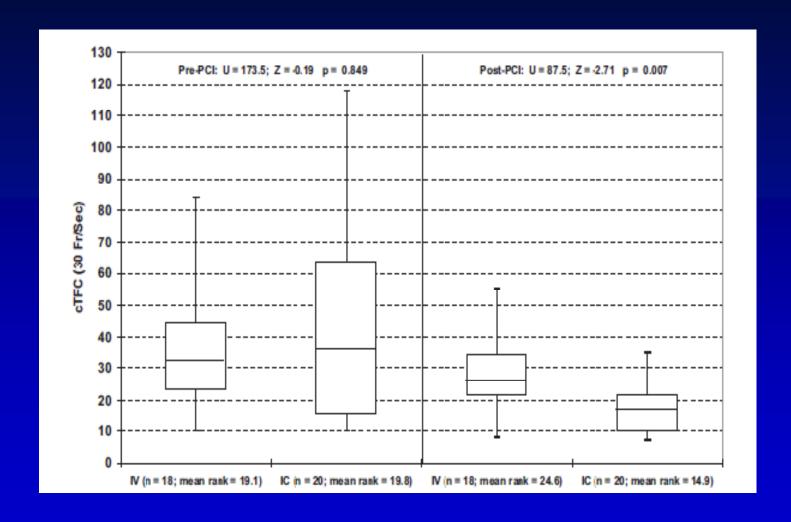
Variables to consider

- Drug
- Timing
- Device
- Concomitant therapy
- Endpoints

ICE (Intracoronary Eptifibatide) Trial

- Single-center prospective randomized trial of 43 patients with ACS
- No STEMI patients treated with primary PCI
- No target lesion in an occluded vessel
- Intracoronary bolus of 180 ug/kg for 2 minutes via the guiding catheter, repeated 10 minutes later with a second bolus vs.

 Intravenous arm with two boluses of 180 ug/kg IV 10 minutes apart
- Both groups received continuous IV infusion at 2 ug/kg/min at the onset of the first bolus and both boluses prior to PCI.


Circulation 2010;121:784-791

Results of ICE Trial

- No angiographic, electrophysiological, or other adverse findings attributable to the intracoronary administration of eptifibatide.
- The systemic inhibition of platelet aggregation was similar in both groups.
- The local platelet GP IIb/IIIa receptor occupancy in the coronary sinus was significantly higher in the intracoronary group for both boluses (after first bolus, $94\pm9\%$ vs $51\pm15\%$; after second bolus, $99\pm2\%$ vs $91\pm4\%$, p=0.001).

Circulation 2010;121:784-791

Improved post-PCI cTFC with IC Integrilin

Circulation 2010;121:784-791

INFUSE-AMI

- Anterior STEMI (proximal or mid LAD occlusion)
- Angiomax as the anticoagulant
- IC Abciximab via ClearWay RX Catheter or No Abciximab
- With or without aspiration thrombectomy

Reperfusion Indices

	IC	-IC		+Asp	-Asp	
TIMI flow after PCI ^C						
0/1	7/229 (3.1)	2/223 (0.9)	.18	4/229 (1.7)	5/223 (2.2)	.75
2	13/229 (5.7)	17/223 (7.6)	.41	13/229 (5.7)	17/223 (7.6)	.41
3	209/229 (91.3)	204/223 (91.5)	.94	212/229 (92.6)	201/223 (90.1)	.36
Corrected TIMI frame count after PCI, median (IQR) [©]	20 (16-26)	20 (16-26)	.62	20 (16-26)	20 (16-26)	.40
MBG 0/1 after PCI ^c	44/228 (19.3)	40/223 (17.9)	.71	38/229 (16.6)	46/222 (20.7)	.26
MBG 2/3 after PCI ^c	184/228 (80.7)	183/223 (82.1)	.71	191/229 (83.4)	176/222 (79.3)	.26
ST-segment resolution at 60 min, median (IQR), % ^{c,d}	69.8 (46.0-85.5)	74.1 (52.6-88.2)	.30	71.2 (45.2-87.2)	74.4 (55.8-87.4)	.37
Complete, >70%	101/202 (50.0)	108/187 (57.8)	.13	101/199 (50.8)	108/190 (56.8)	.23
Partial, 30%-70%	73/202 (36.1)	49/187 (26.2)	.04	65/199 (32.7)	57/190 (30.0)	.57
Absent, <30%	28/202 (13.9)	30/187 (16.0)	.55	33/199 (16.6)	25/190 (13.2)	.34

JAMA 2012;307 online

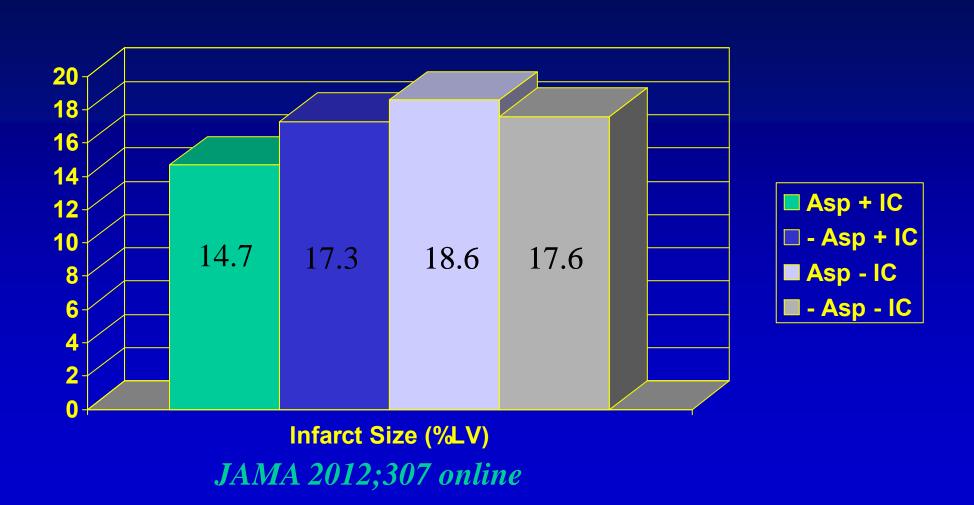

Modest Reduction in Infarct Size and Mass by IC RX

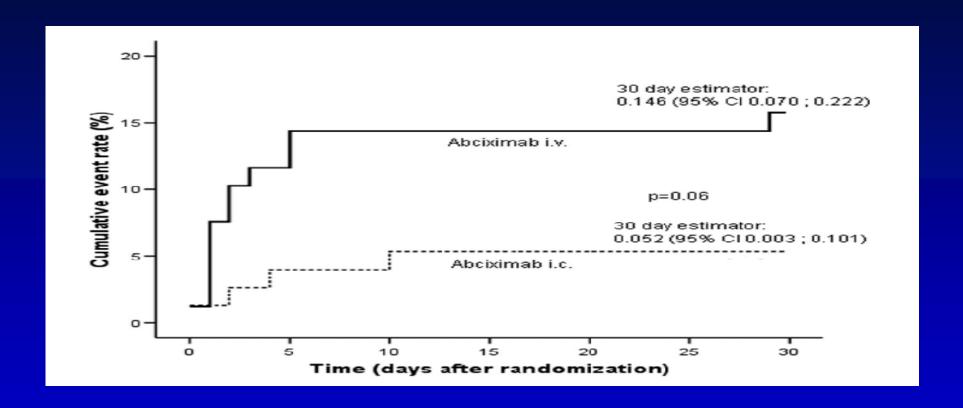
Table 3. Thirty-Day	Cardiac Magnetic Resonance	Imaging Results for the Po	poled Randomized Groups
, ,			

	9	0 0		l I		
	Intracoronary Abciximab ^a (n = 188)	No Intracoronary Abciximab ^a (n = 184)	P Value	Aspiration Thrombectomy ^b (n = 186)	No Aspiration Thrombectomy ^b (n = 186)	<i>P</i> Value
Infarct size, median [IQR], % of total LV mass ^c	15.1 [6.8-22.7] (n = 181)	17.9 [10.3-25.4] (n = 172)	.03	17.0 [9.0-22.8] (n = 174)	17.3 [7.1-25.5] (n = 179)	.51
Total LV myocardial mass, median [IQR], g	128.6 [106.6-152.4] (n = 181)	130.4 [109.9-155.9] (n = 172)	.55	128.3 [108.9-149.8] (n = 174)	132.0 [107.6-156.1] (n = 179)	.50
Infarct mass, median [IQR], g	18.7 [7.4-31.3] (n = 184)	24.0 [12.1-34.2] (n = 175)	.03	20.3 [9.7-31.7] (n = 178)	21.0 [9.1-34.1] (n = 181)	.36
Total abnormal wall motion score, median [IQR]	7.0 [2.0-10.0] (n = 188)	8.0 [3.0-10.0] (n = 184)	.08	7.5 [2.0-10.0] (n = 186)	7.5 [2.0-10.0] (n = 186)	.89
Left ventricular ejection fraction, median (IQR), %	502 [44.2-57.9] (n = 182)	48.9 [42.3-56.7] (n = 179)	.22	49.6 [43.3-56.8] (n = 181)	49.5 [41.8-57.6] (n = 180)	.66

JAMA 2012;307 online

INFUSE-AMI: Infarct size at 30 days

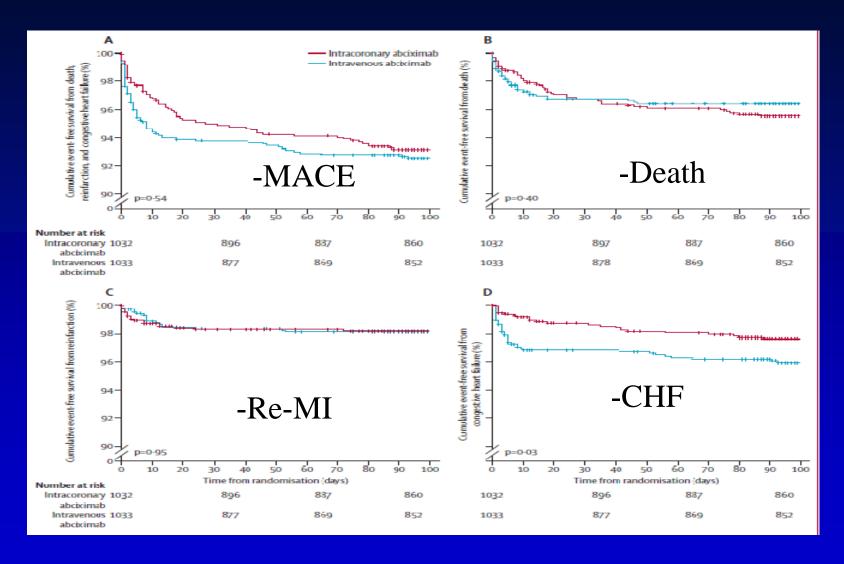
Table 4. Clinical Efficacy	and Safety End Points at 30 Days for the Pooled Ran	ndomized Groups

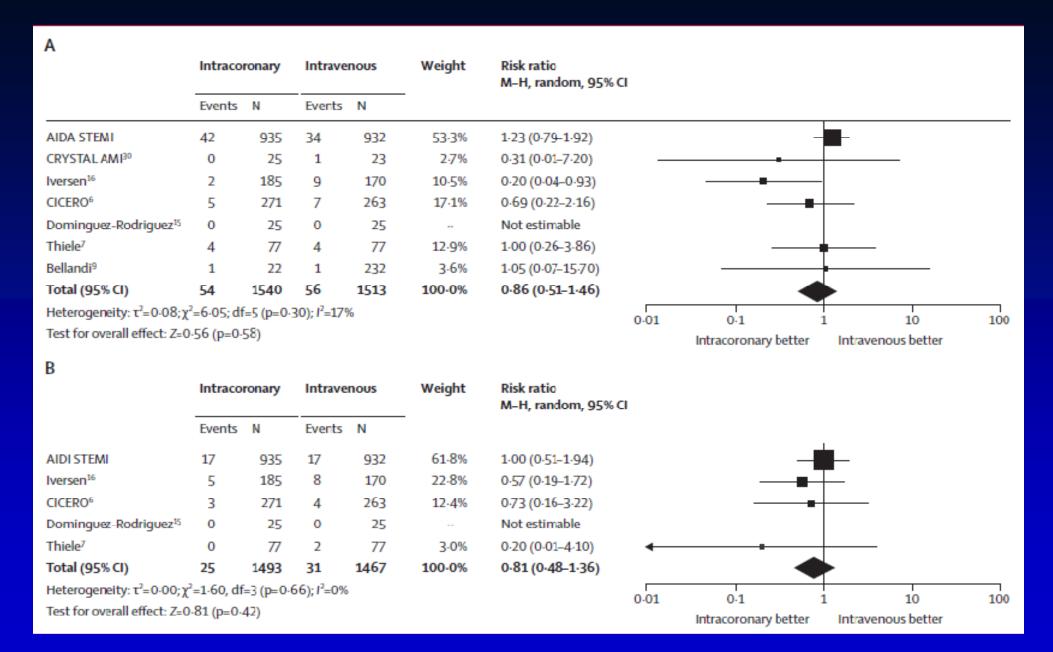

	No. of Events (%) ^a					
	Intracoronary Abciximab ^b (n = 229)	No Intracoronary Abciximab ^b (n = 223)	<i>P</i> Value	Aspiration Thrombectomy ^c (n = 229)	No Aspiration Thrombectomy ^c (n = 223)	P Value
		Efficacy End Poir				
MACCE	11 (4.8)	7 (3.2)	.36	7 (3.1)	11 (5.0)	.31
MACE	16 (7.0)	15 (6.8)	.91	15 (6.6)	16 (7.2)	.81
Death	8 (3.5)	5 (2.3)	.42	7 (3.1)	6 (2.7)	.81
Reinfarction	1 (0.5)	2 (0.9)	.56	1 (0.5)	2 (0.9)	.55
New-onset severe heart failure	7 (3.1)	10 (4.5)	.44	8 (3.5)	9 (4.1)	.77
Rehospitalization for heart failure	0	2 (0.9)	.15	0	2 (0.9)	.15
Stroke	1 (0.4)	0	.32	0	1 (0.5)	.31
Clinically driven TVR	2 (0.9)	3 (1.4)	.65	1 (0.5)	4 (1.8)	.17
Stent thrombosis, definite or probable	2 (0.9)	2 (0.9)	.99	3 (1.4)	1 (0.5)	.33
Acute, <24 h	0	0		0	0	
Subacute, 1-30 d	2 (0.9)	2 (0.9)	.99	3 (1.4)	1 (0.5)	.33
		Bleeding End Poi	nts			
HORIZONS-AMI major bleeding	11 (4.9)	8 (3.6)	.50	9 (4.0)	10 (4.6)	.79
TIMI major or minor bleeding	5 (2.2)	4 (1.8)	.75	3 (1.3)	6 (2.8)	.30
TIMI major	5 (2.2)	1 (0.5)	.11	2 (0.9)	4 (1.8)	.40
TIMI minor	0	3 (1.4)	.08	1 (0.5)	2 (0.9)	.55
GUSTO blooding, any	15 (6.75)	12 (5.5)	.58	12 (5.3)	15 (6.8)	.51
GUSTO severe	10 (4.4)	9 (4.1)	.84	9 (4.0)	10 (4.5)	.77
GUSTO moderate	3 (1.3)	0	.09	2 (0.9)	1 (0.5)	.58
GUSTO mild	2 (0.9)	3 (1.4)	.64	1 (0.4)	4 (1.8)	.17
Any blood product transfusion	4 (1.8)	1 (0.5)	.18	2 (0.9)	3 (1.4)	.64
Thrombocytopenia, in-hospital ^d	2/196 (1.0)	2/179 (1.1)	.99	1/186 (0.5)	3/189 (1.6)	.62

Much More Work to be Done

TIMI 3 Flow	91.4%
MBG ≥2	81.4%
Complete STR	53.7%
@ 60 min	

JAMA 2012;307 online


Pre-AIDA STEMI Randomized Study (N=154)

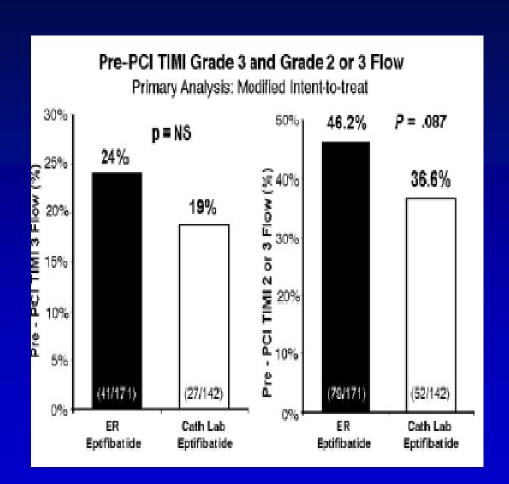


Significant reduction in infarct size and microvascular obstruction

Circulation 2008;118:49-57

AIDA STEMI: N=2065

Lancet 2012;379:923-31


Pre-AIDA STEMI vs AIDA STEMI


- Smaller sample size
- Older patients
- No preloading with thienopyridines
- No thrombectomy
- Longer ischemic time

Potential Mechanism of No Sustained Benefit

- "At late sampling after 30 minutes, no significant differences were found between (iv vs. ic abciximab) groups for both platelet reactivity and GP IIb/IIIa receptor occupancy." (Clin Res Cardiol 2012;101:117-24)
- "Platelet glycoprotein IIb/IIIa receptor occupancy was significantly greater with ic vs iv administration (of integrilin): first bolus, $94\pm9\%$ vs $51\pm15\%$, p<0.001; and second bolus, $99\pm2\%$ vs $91\pm4\%$, p=0.001." (Circulation 2010;121:784-791)

Benefit of Upstream IV Integrilin

Am Heart J 2006;152:668-75

"The present updated meta-analysis showed that IC administration of abciximab is associated with significant benefits in myocardial perfusion, but not in clinical outcome at short-term follow-up as compared to IV abciximab administration, without any excess of major bleedings in STEMI patients undergoing primary PCI.

IC abciximab administration cannot be routinely recommended, but may be considered in high-risk patients."

Atherosclerosis 2012;Mar 7

IC GP IIb/IIIa Inhibitor Therapy

Safety	+
Acute efficacy	土
Long-term benefit	_
Routine Recommendation	
Select, high-risk patients	±
Type of agent	_

Proposed Algorithm for the Future

- Upstream intravenous GPI therapy with ACS Dx
- If (+) high-risk angiographic features with thrombus, intracoronary GPI therapy without manipulating the thrombus/lesion
- Manual aspiration with a low-profile catheter
- Angioplasty of the lesion with a dual angioplasty/local infusion catheter, followed by minimally traumatic stent implantation
- Combination pharmacologic/mechanical therapy to achieve normal myocardial perfusion prior to conclusion of the procedure