


Seoul, 27 April TCT AP 2010



# **Thrombus Aspiration before PCI:** Routine Mandatory

**Robbert J de Winter MD PhD FESC** 

Professor Clinical Cardiology Academic Medical Center University of Amsterdam



#### Case # 1:

- ♥ male, 43 yrs
- Hypertension, Smoking, Positive family history
- No prior cardiac history
- Morning run 10 miles without complaints
- Chest pain while cooling down
- ♥ Sweating, nausea, near fainting



Male 43 yrs Acute ischemia

**Urgent CAG** 

- heparin 75IU/kg
- aspirin iv
- clopidogrel
- abciximab



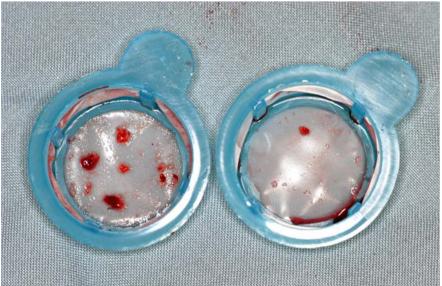
Male 43 yrs Acute ischemia

**Urgent CAG** 

- heparin 75IU/kg
- aspirin iv
- clopidogrel
- abciximab



Male 43 yrs Acute ischemia


**Urgent CAG** 

- heparin 75IU/kg
- aspirin iv
- clopidogrel
- abciximab



#### **Result after thrombectomy**







Result after 5 days

- UFH i.v.
- ASA
- Clopidogrel



- Case # 1:
- ♥ male, 43 yrs
- Anterior AMI
- Large thrombus burden
- Thrombectomy effective (no additional stenting) in addition to anti-platelet and anti-thrombotic Rx



#### **Rationale of Thrombectomy and Embolic Protection**

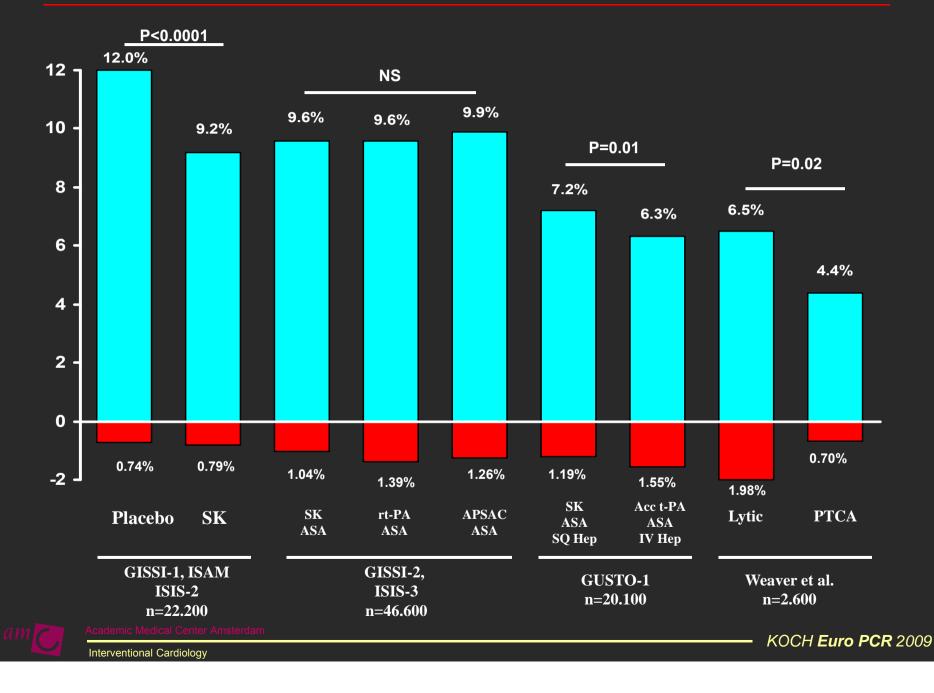
- pPCI preferred treatment in STEMI
- ♥ 85% 93% restoration epicardial flow
- Frequent suboptimal myocardial perfusion
  - Distal embolization
  - Slow flow / no-reflow
  - Microvascular obstruction
- Occurring in up to 33% of patients
- Reduction of thrombus burden and distal embolization may improve microvascular perfusion, reduce infarct size and possibly clinical outcome





#### **Treatment of STEMI**

# Why has it been so difficult to demonstrate beneficial effects of thrombus aspiration?




Academic Medical Center Amsterdam

Interventional Cardiology

KOCH Euro PCR 2009

#### **30-day mortality and stroke rate after reperfusion therapy**



#### **Treatment of STEMI**

A randomized controlled trial demonstrating a significant reduction in mortality of adjuvant treatment in primary PCI in STEMI, with conventional pPCI 30-day mortality ~4%, would require > 2000 patients

**Evidence largely based on meta-analyses** 



Academic Medical Center Amsterdam

nterventional Cardiology

KOCH Euro PCR 2009

#### **Rationale of Thrombectomy and Embolic Protection**

- Smaller studies underpowered for clinical endpoints
- Surrogate endpoints associated with outcome

#### Measures of incomplete reperfusion

- Distal embolization
- TIMI-grade flow post PCI
- Myocardial Blush Grade MBG
- ♥ ST-recovery
- Infarct size
- Myocardial salvage



#### **Thrombectomy and Embolic Protection Devices**

- Distal embolic protection devices
- Proximal embolic protection devices
- Thrombus aspiration catheters
  - Mechanical
  - Non-manual (vacuum)
  - 🛛 Manual







Academic Medical Center Amsterdam

nterventional Cardiology

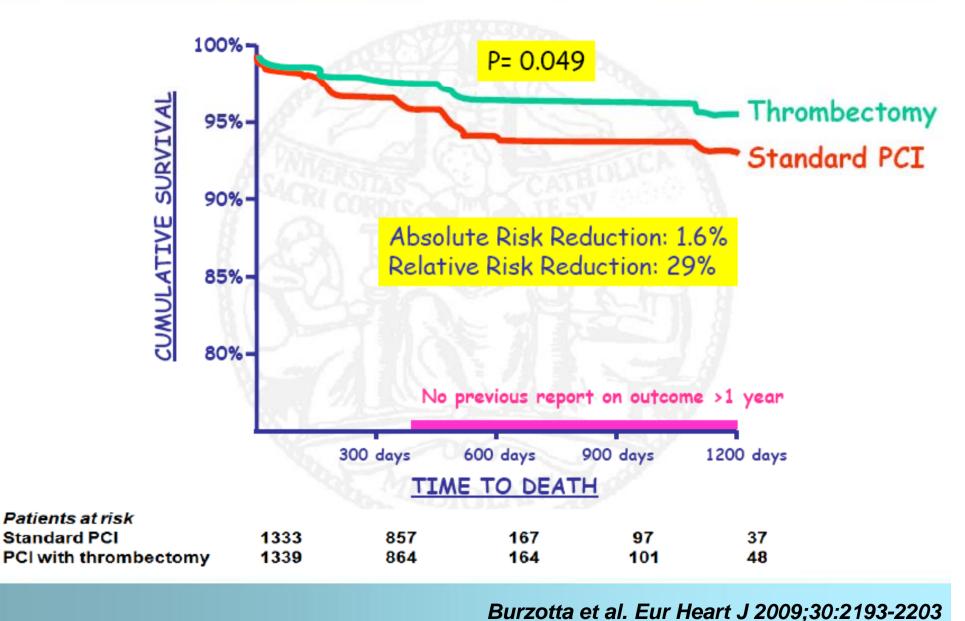
KOCH Euro PCR 2009

# Thrombectomy, but not distal protection, reduce no-reflow as compared to standard PCI

| Study<br>or sub-category | Adjunctive Device<br>n/N                                                                                                        | Standard PCI<br>n/N | OR (random)<br>95% Cl                     | OR (random)<br>95% Cl |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|-----------------------|
| 06 Thrombectomy          |                                                                                                                                 |                     |                                           |                       |
| VAMPIRE                  | 122/180                                                                                                                         | 128/175             |                                           | 0.77 [0.49, 1.22]     |
| Beran et al.             | 12/23                                                                                                                           | 19/23 🗲             |                                           | 0.23 [0.06, 0.89]     |
| Napodano et al.          | 19/46                                                                                                                           | 31/46               |                                           | 0.34 [0.15, 0.80]     |
| AM                       | 105/240                                                                                                                         | 129/240             |                                           | 0.67 [0.47, 0.96]     |
| X-AMINE ST               | 32/100                                                                                                                          | 48/101              |                                           | 0.52 [0.29, 0.92]     |
| DEAR-MI                  | 24/74                                                                                                                           | 37/74               |                                           | 0.48 [0.25, 0.93]     |
| Dudek et al.             | 13/40                                                                                                                           | 24/32 🗲             |                                           | 0.16 [0.06, 0.45]     |
| Antoniucci et al.        | 5/50                                                                                                                            | 14/50               |                                           | 0.29 [0.09, 0.87]     |
| REMEDIA                  | 21/50                                                                                                                           | 31/49               |                                           | 0.42 [0.19, 0.94]     |
| Export Study             | 12/24                                                                                                                           | 24/26               |                                           | 0.08 [0.02, 0.43]     |
| Kaltoft et al            | 22/108                                                                                                                          | 20/107              |                                           | 1.11 [0.57, 2.19]     |
| )e Luca et al            | 7/38                                                                                                                            | 17/38 🗲             |                                           | 0 28 10 10 0 791      |
| ubtotal (95% Cl)         | 973                                                                                                                             | 961                 |                                           | 0.45 [0.33, 0.63]     |
| 7 Distal protection      |                                                                                                                                 |                     |                                           |                       |
| DIPLOMAT                 | 10/30                                                                                                                           | 12/26               |                                           | 0.58 [0.20, 1.72]     |
| EMERALD                  | 88/240                                                                                                                          | 91/239              |                                           | 0.94 [0.65, 1.36]     |
| ASPARAGUS                | 108/165                                                                                                                         | 101/168             | +                                         | 1.26 [0.81, 1.96]     |
| JPFLOW MI                | 17/51                                                                                                                           | 17/49               |                                           | 0.94 [0.41, 2.15]     |
| REMIAR                   | 28/70                                                                                                                           | 28/70               |                                           | 1 00 (0 51 1 971      |
|                          | 556<br>tive Device), 249 (Standard PCI)<br>i <sup>2</sup> = 2.08, df = 4 (P = 0.72), l <sup>2</sup> = 0%<br>: 0.08 (P = 0.94)   | 552                 |                                           | 1.01 [0.79, 1.29]     |
|                          | 1529<br>tive Device), 771 (Standard PCI)<br>i <sup>z</sup> = 41.61, df = 16 (P = 0.0005), i <sup>z</sup> =<br>3.92 (P < 0.0001) | 1513<br>• 61.5%     | •                                         | 0.58 [0.44, 0.76]     |
| Endpoint: S              | ST-resolution                                                                                                                   | 0.1                 | 0.2 0.5 1 2 5<br>AD better Std PCI better | 10                    |



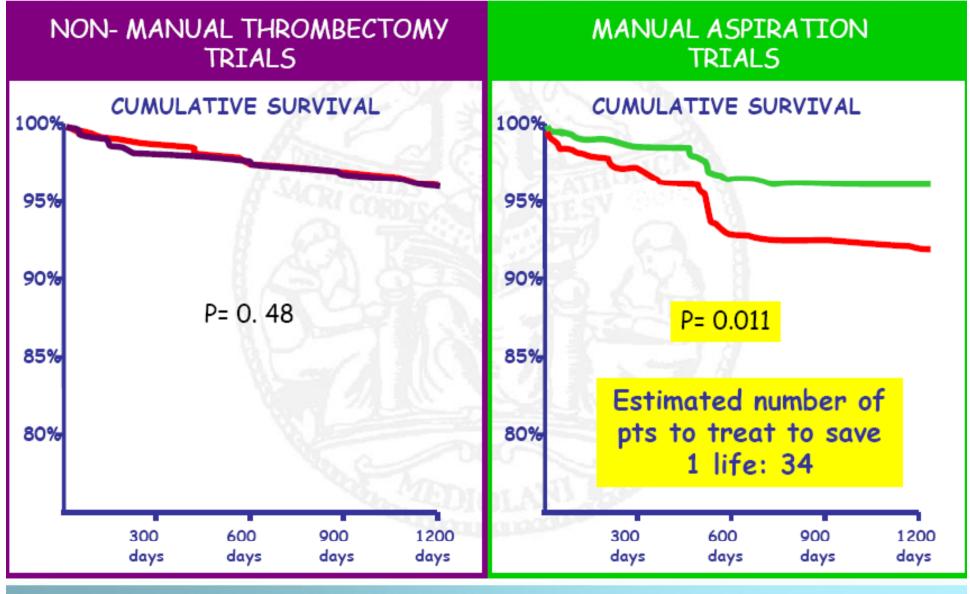
# INCLUDED TRIALS



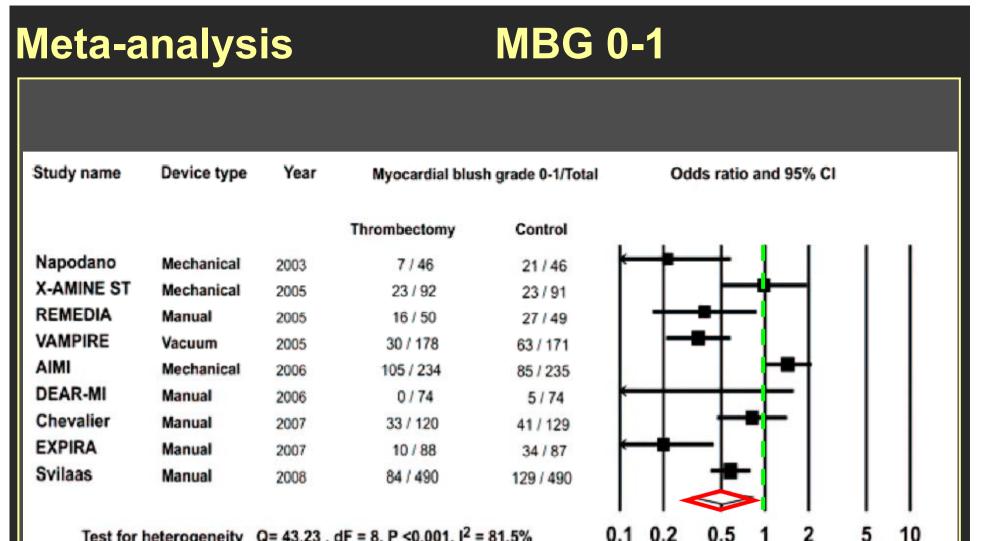





# PRIMARY END-POINT






# TYPE OF THROMBECTOMY





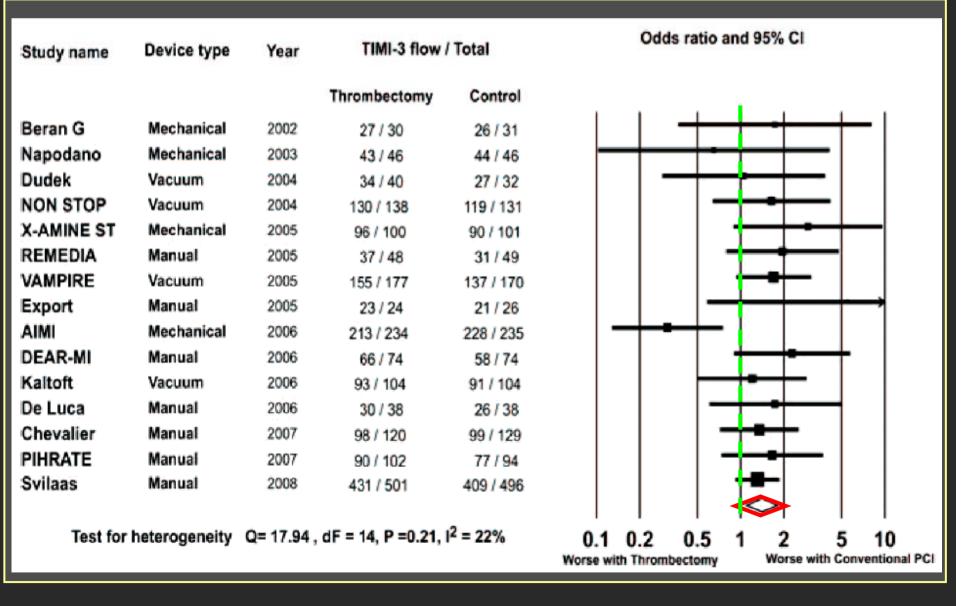
Burzotta et al. Eur Heart J 2009;30:2193-2203



Test for heterogeneity Q= 43.23 . dF = 8. P < 0.001. I<sup>2</sup> = 81.5%





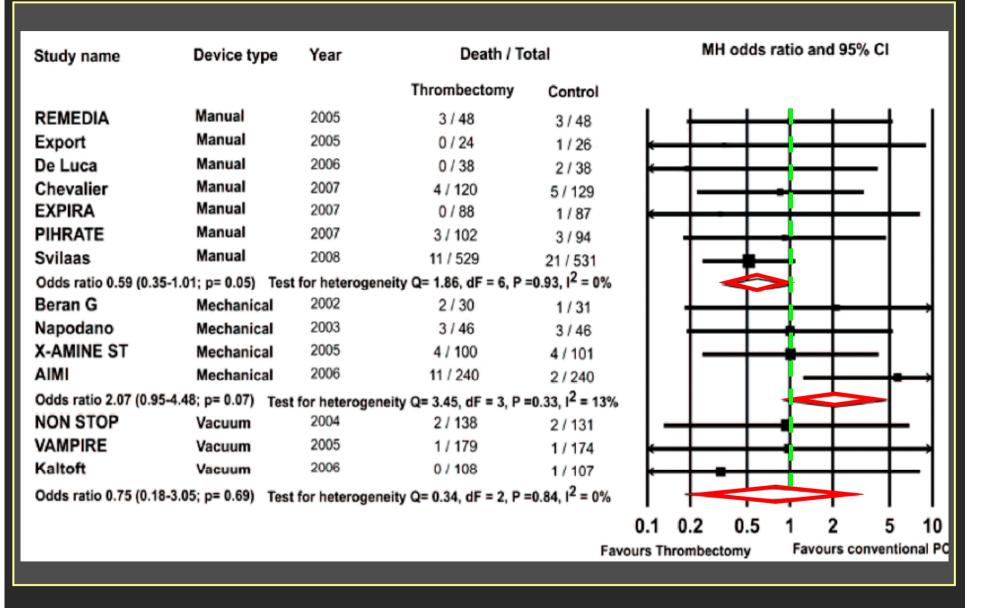

Tamhane et al. BMC Cardiovasc Disord 2010;10:10

AMC Amsterdam Interventional Cardiology

**Favours Thrombectomy** 

#### **Meta-analysis**

#### **TIMI-3** flow




Tamhane et al. BMC Cardiovasc Disord 2010;10:10

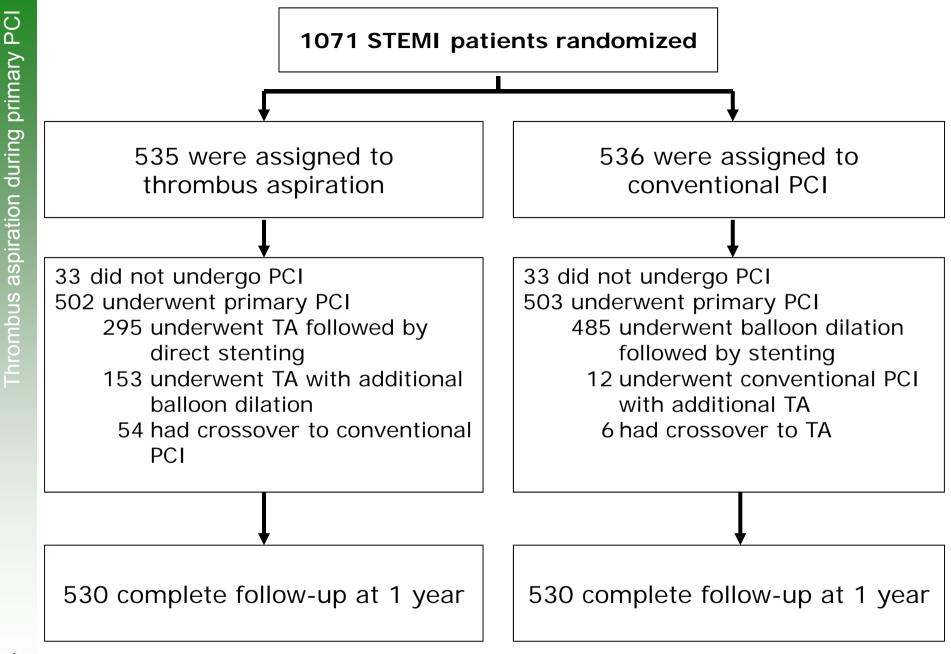
AMC Amsterdam Interventional Cardiology

#### **Meta-analysis**

#### **Mortality**



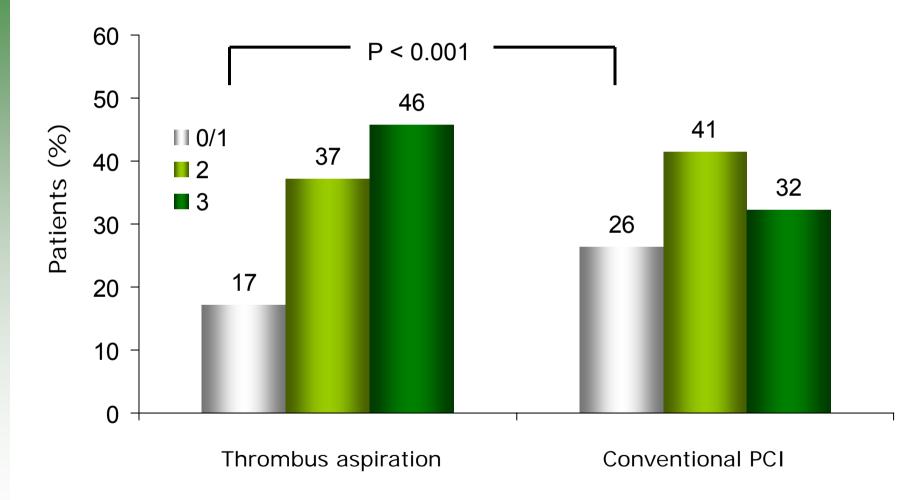
Tamhane et al. BMC Cardiovasc Disord 2010;10:10


AMC Amsterdam Interventional Cardiology

# Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS) F. Zijlstra, MD PhD Thoraxcenter

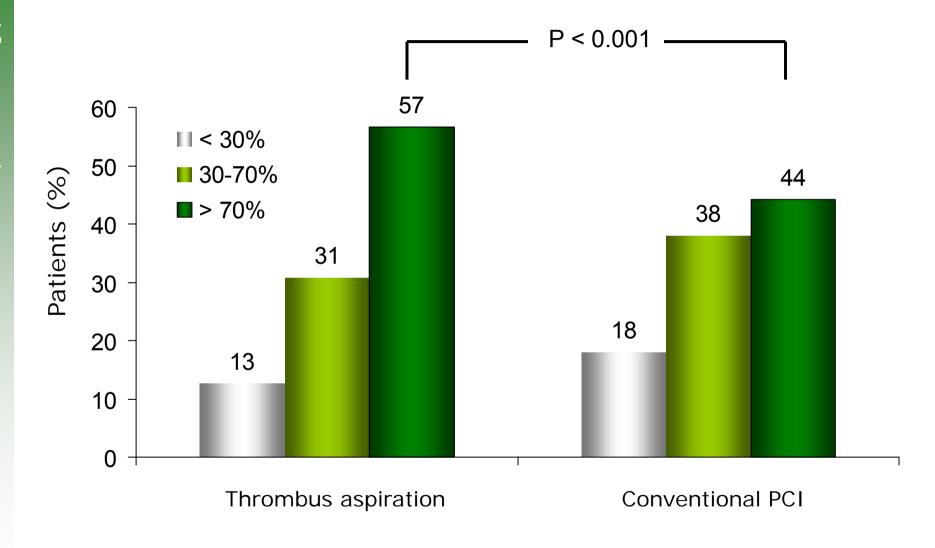
Thoraxcenter University Medical Center Groningen, The Netherlands

University Medical Center Groningen


FZ 2008-1

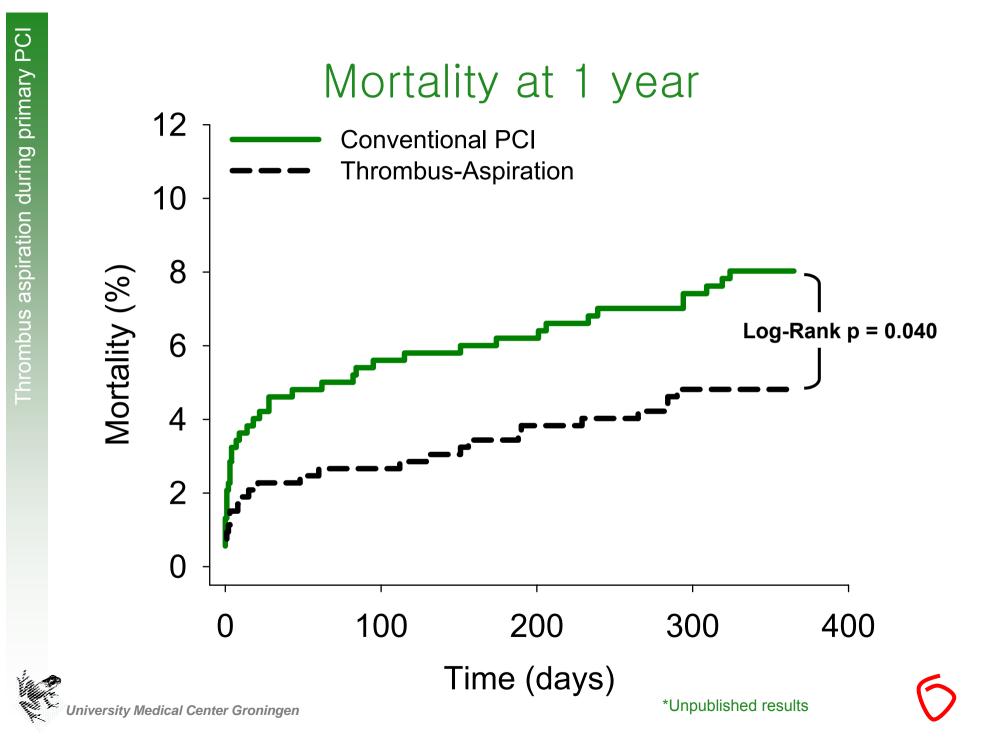





Thrombus aspiration during primary PCI

# Primary endpoint: Myocardial blush grade





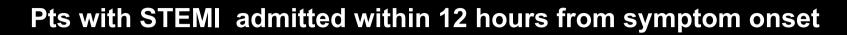

# ST-segment elevation resolution

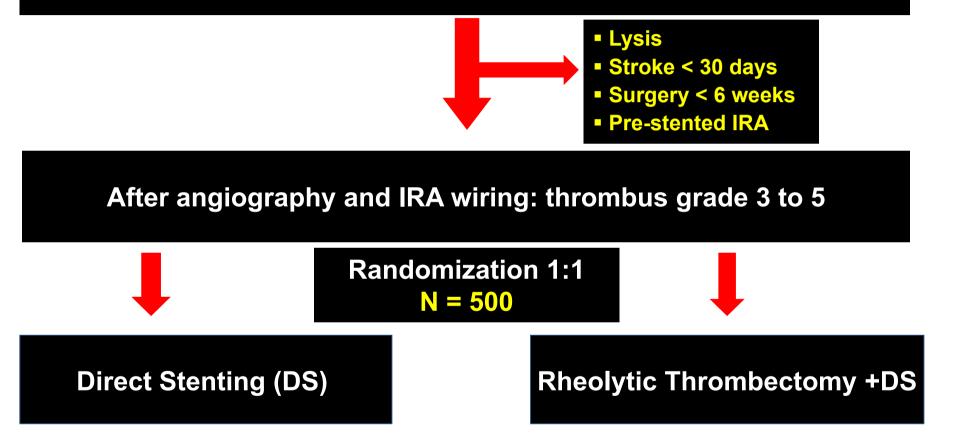


University Medical Center Groningen

Svilaas T et al. NEJM 2008;358-557 - FZ 2008-9




# **Comparison of AngioJET Rheolytic** Thrombectomy **Before Direct Infarct Artery STENT**ing with Direct Stenting Alone in Patients with Acute Myocardial Infarction: the **JETSTENT** trial


David Antoniucci on behalf of the JETSTENT Investigators





#### **Study Design**







#### **Technique for AngioJet Use and DS**

Single pass anterograde technique

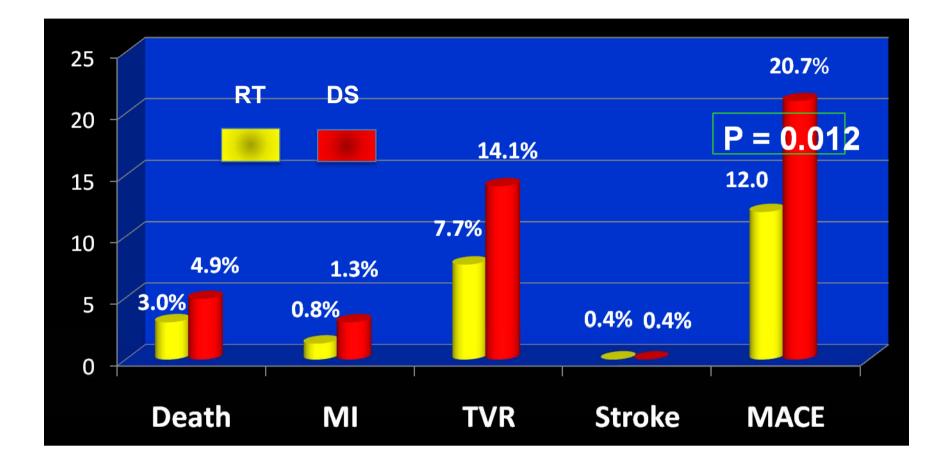
(activate AngioJet proximal to thrombus)

- Angiographic check after first AngioJet pass.
- Temporary pacemaker strongly discouraged.
- Balloon pre-dilation strongly discouraged.
- DS had to be attempted in all cases in both arms.
- Routine Abciximab in both arms.








### **Surrogate Endpoints**

|                     | RT                     | DS                     | p value |
|---------------------|------------------------|------------------------|---------|
|                     | n=246                  | n=240                  |         |
| STR ≥ 50% at 30 min | 211 (85.8)             | 189 (78.8)             | .043    |
|                     | n=217                  | n=208                  |         |
| Infarct Size (%)    | <b>11.8</b> [3.1-23.7] | <b>12.7</b> [4.7-23.3] | .398    |
|                     | n=252                  | n=241                  |         |
| Final TIMI 3 flow   | 203 (80.6)             | 207 (85.9)             | .113    |
|                     | n=228                  | n=216                  |         |
| cTFC                | <b>20</b> [15.0-27.2]  | <b>20</b> [14.0-25.7]  | .357    |
|                     | n=215                  | n=211                  |         |
| Blush grade         |                        |                        | .207    |
| 0-1                 | 17 (8)                 | 11 (5)                 |         |
| 2 3                 | 43 (20)                | 33 (16)                |         |
| 3                   | 155 (72)               | 167 (79)               |         |





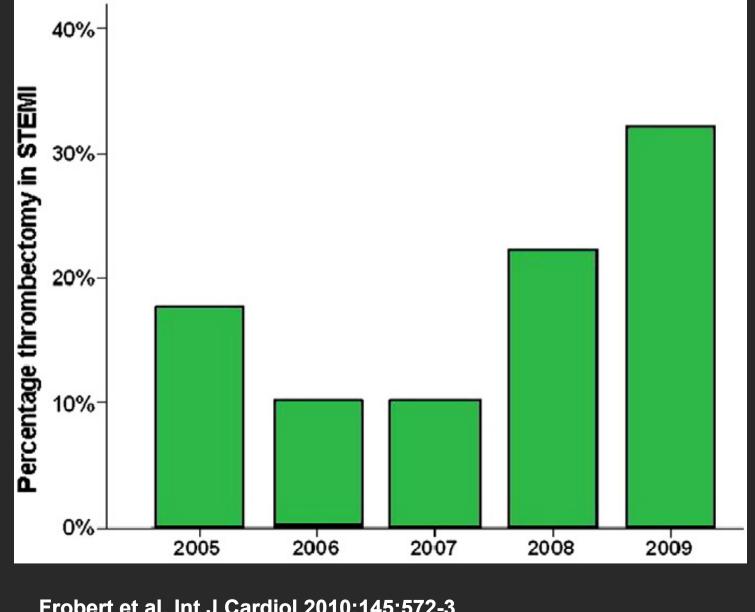
# 6-Month Outcome





### **Primary PCI: Adjunctive Therapies**

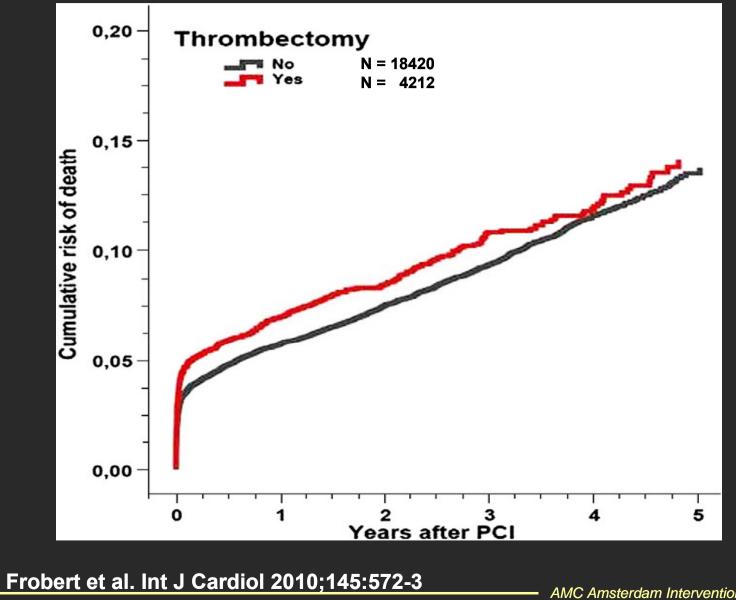



| Recommendations                      | Class | LOE |
|--------------------------------------|-------|-----|
| Antiplatelet co-therapy              |       |     |
| Aspirin                              | 1     | В   |
| NSAID and COX-2 selective inhibitors | Ш     | в   |
| Clopidogrel loading dose             | I     | С   |
| GPIIb/IIIa antagonist                |       |     |
| <ul> <li>abciximab</li> </ul>        | lla   | Α   |
| <ul> <li>tirofiban</li> </ul>        | llb   | В   |
| eptifibatide                         | llb   | С   |
| Antithrombin co-therapy              |       |     |
| heparin                              | 1     | С   |
| bivalirudin                          | lla   | В   |
| fondaparinux                         | Ш     | В   |
| Adjunctive devices                   |       |     |
| Thrombus aspiration                  | llb   | В   |

2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (Updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (Updating the 2005 Guideline and 2007 Focused Update)

 upgrade of the recommendation for PCI in unprotected left main disease from a class III to a class IIb indication.

• the use of aspiration thrombectomy in primary PCI. IIa, LOE B


#### Thrombus Aspiration in the SCAAR registry



Frobert et al. Int J Cardiol 2010;145:572-3

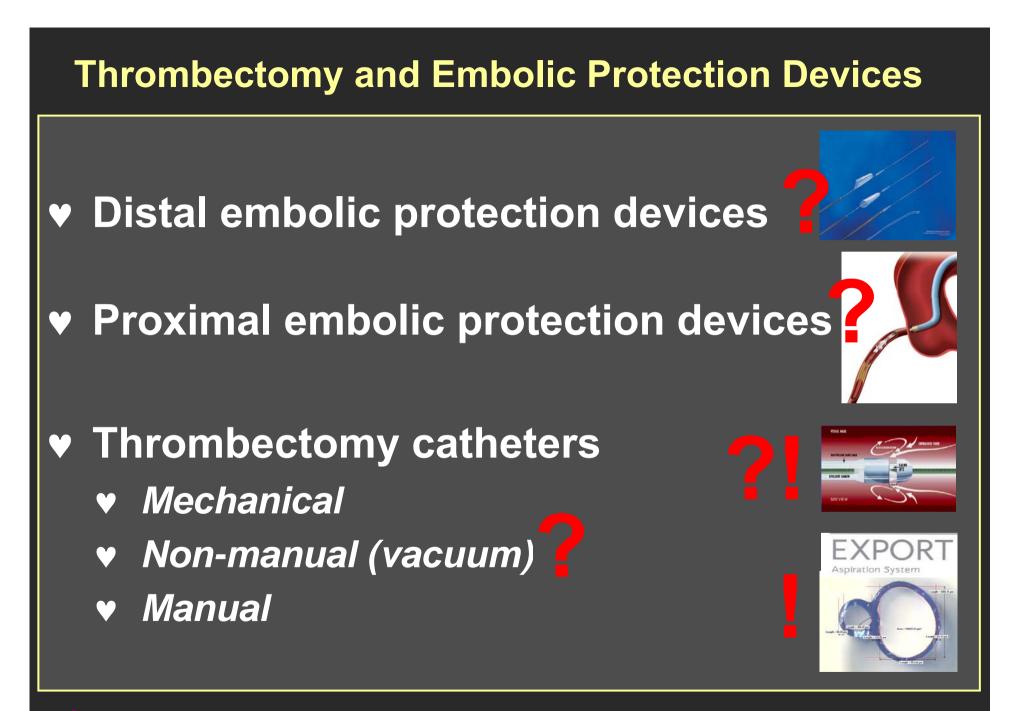
AMC Amsterdam Interventional Cardiology

#### Thrombus Aspiration in the SCAAR registry



AMC Amsterdam Interventional Cardiology

#### **Thrombus Aspiration Trials in Progress**


Rationale and design of the INFUSE-AMI study: A 2 × 2 factorial, randomized, multicenter, single-blind evaluation of intracoronary abciximab infusion and aspiration thrombectomy in patients undergoing percutaneous coronary intervention for anterior ST-segment elevation myocardial infarction

C. Michael Gibson, MS, MD,<sup>a,j</sup> Akiko Maehara, MD,<sup>b,j</sup> Alexandra J. Lansky, MD,<sup>b,j</sup> Jochen Wohrle, MD,<sup>c,j</sup> Tom Stuckey, MD,<sup>d,j</sup> Rajesh Dave, MD,<sup>e,j</sup> David Cox, MD,<sup>f,j</sup> Cindy Grines, MD,<sup>g,j</sup> Dariusz Dudek, MD,<sup>h,j</sup> Gabriel Steg, MD,<sup>i,j</sup> Helen Parise, ScD,<sup>i,j</sup> Steven D. Wolff, MD, PhD,<sup>b,j</sup> Ecaterina Cristea, MD,<sup>b,j</sup> and Gregg W. Stone, MD<sup>b,j</sup> Boston, MA; New York, NY; Ulm, Germany; Greensboro, NC; Harrisburg, and Allentown, PA; Royal Oak, MI; Krakow, Poland; and Paris, France

Thrombus Aspiration in ST-Elevation myocardial infarction in Scandinavia (TASTE trial). A multicenter, prospective, randomized, controlled clinical registry trial based on the Swedish angiography and angioplasty registry (SCAAR) platform. Study design and rationale

Ole Fröbert, MD, PhD,<sup>a</sup> Bo Lagerqvist, MD, PhD,<sup>b</sup> Thórarinn Gudnason, MD, PhD, FESC,<sup>c</sup> Leif Thuesen, MD, PhD,<sup>d</sup> Roger Svensson, MSci,<sup>e</sup> Göran K. Olivecrona, MD, PhD,<sup>f</sup> and Stefan K. James, MD, PhD<sup>b</sup> Örebro, Uppsala and Lund, Sweden; Reykjavik, Iceland; and Aarbus, Denmark





Academic Medica

KOCH **Euro PCR** 2009



Paris, 28 mei, EuroPCR 2010



# Should we perform Thrombus Aspiration in all STEMI Patients undergoing primary PCI?







#### Table 1

One-year clinical outcomes in selected randomized ST segment myocardial infarction trials from 2000 to 2010

| Study                           | Yr   | Intervention    | Control   | n    | All-cause death (%) |     | Cardiac mortality (%) |     | MI (%) |     |
|---------------------------------|------|-----------------|-----------|------|---------------------|-----|-----------------------|-----|--------|-----|
|                                 |      |                 |           |      | С                   | S   | С                     | S   | С      | S   |
| NORDISTEMI[16]                  | 2010 | All PCI         | Selective | 276  | 3.0                 | 2.2 | NA                    | NA  | 9.0    | 3.0 |
| HORIZONS AMI[17]                | 2009 | Bivalurudin     | Hep/Gp    | 3602 | 4.8                 | 3.5 | 3.8                   | 2.1 | NA     | NA  |
| TAPAS[5]                        | 2008 | TA + PCI        | PCI/no TA | 1071 | 7.6                 | 4.7 | 6.7                   | 3.6 | 4.3    | 2.2 |
| DANAMI-2[18]                    | 2008 | PCI             | Lytic     | 1424 | 1.3                 | 1.4 | NA                    | NA  | 0.9    | 1.3 |
| Transfer with Tirofiban for PCI | 2007 | Transfer/PCI    | Lytic     | 401  | NA                  | NA  | 12.5                  | 7.0 | 7.5    | 3.5 |
| Thrombolysis with STEMI[19]     |      |                 |           |      |                     |     |                       |     |        |     |
| SESAMI[20]                      | 2007 | DES             | BMS       | 320  | 4.3                 | 1.8 | NA                    | NA  | 1.8    | 1.8 |
| TYPHOON[21]                     | 2006 | DES             | BMS       | 712  | 2.2                 | 2.3 | 1.4                   | 2.0 | 1.4    | 1.1 |
| PASSION[22]                     | 2006 | DES             | BMS       | 619  | NA                  | NA  | 6.5                   | 4.5 | 1.9    | 1.6 |
| ADMIRAL[23]                     | 2004 | Abciximab + PCI | PCI       | 400  | 12.5                | 6.0 | 10.5                  | 5.0 | 6.0    | 1.0 |
| STENTIM-2[24]                   | 2000 | BMS             | BA        | 211  | 1.9                 | 3.0 | NA                    | NA  | 5.5    | 4.0 |

BA: Balloon angioplasty; BMS: Bare metal stent; C: Control group; DES: Drug-eluting stent; Gp: Glycoprotein Ilb/Illa inhibitors; Hep: Heparin; MI: Myocardial infarction; NA: Not applicable; S: Study (intervention) coronary interventio

#### Table 2

Randomized studies utilizing manual aspiration devices in ST segment myocardial infarction and primary percutaneous coronary intervention<sup>1</sup>

| Study            | Yr   | n    | Device                                            | Primary endpoint(s)                                  | Outcomes <sup>1</sup> |
|------------------|------|------|---------------------------------------------------|------------------------------------------------------|-----------------------|
| EXPIRA[14]       | 2009 | 175  | Export (Medtronic, Minneapolis, MN, USA)          | xport (Medtronic, Minneapolis, MN, USA) MBG > 2, STR |                       |
| VAMPIRE[11]      | 2008 | 355  | TVAC (Nipro, Osaka, JP)                           | SR or NR                                             | Trend to improvement  |
| TAPAS[5]         | 2008 | 1071 | Export (Medtronic, Minneapolis, MN, USA)          | MBG                                                  | Improvement           |
| De Luca et al[8] | 2006 | 76   | Diver CE (Invatec, Brescia, IT)                   | MBG > 2, STR                                         | Improvement           |
| Kaltoft et al[9] | 2006 | 215  | Rescue (BSC, Maple Grove, MN, USA)                | Myocardial salvage                                   | No improvement        |
| DEAR-MI[10]      | 2006 | 148  | Pronto (Vascular Solutions, Minneapolis, MN, USA) | STR, MBG 3                                           | Improvement           |
| REMEDIA[6]       | 2005 | 99   | Diver CE (Invatec, Brescia, IT)                   | MBG > 2, STR                                         | Improvement           |

<sup>1</sup>Please see text for study data. MBG: Myocardial blush grade; NR: No reflow; SR: Slow reflow; STR: ST segment resolution.

