How could we overcome the diffuse calcified lesions?

Cho Yoon Haeng

Soonchunhyang Univ. Bucheon Hospital South Korea Cardiology

65/M, Stable angina

- HTN, DM under medications
- old CVA
- ♠ EKG; ST-T changes
- No cardiac enzyme changes
- ♠ Ant.septal, Basal inf. wall hypokinesia (LVEF=54%)

Baseline CAG

Predilatation

- 8-Fr. JR 3.5, SH guiding catheter
- Filder-FC wire
- Ryujin balloon 1.25
 x 10 mm, 1.5 x 12
 mm

Suddenly, Hemodynamic unstable

Atropine IV Verapamil IC Abciximab IV

Despite predilatation, it seemed to be no difference of lesion morphology compared with pre-CAG due to complex diffuse calcification.

What shall we do?

Over-sized balloon dilatation?

Rotational atherectomy

Using Finecross 1.8 Fr microcatheter, the wire in RCA was changed to the 325 cm 0.014 inch Rota wire. Rotational atherectomy was performed using 1.25 mm burr

Rotational atherectomy

Rotational atherectomy was performed 10 times using 1.75 mm burr

Despite my effort, it seemed to be more complex due to my harmful procedure.

What shall we do?

'Child' in 'Mother' Catheter

Despite rotational artherectomy, optimal predilatation and stent placement were impossible due to the inability to cross the lesions. A 5F child (Heartrail ST01, Terumo, Japan) in 8F mother catheter was advanced distal to the calcified segment with assistance of anchor balloon technique

Exchange the guide catheter

The guiding catheter was changed to a 7 Fr AL-1 guiding catheter with the support of a Choice PT-extra support wire for strong back-up support

Final angiogram

Baseline CAG

'Child' in 'Mother' Catheter

- 7-Fr. EBU 3.5 guiding catheter
- 5-Fr. 150cm
 Heartrail guiding catheter
- Filder-FC wire
- Fire-Star balloon 2.5 x 15 mm

Even though severe dissection happened after predilatation, Stents could cross the lesion through the child guide catheter.

Final angiogram

9-month FU angiogram

81/F, Unstable angina

- HTN, DM under medications
- Hypothyroidism, AAA
- ♠ EKG; ST-T changes
- No cardiac enzyme changes
- ♠ No RWMA (LVEF=64%, E/E' 16.7)

Cardiac CT Angiography

nChunHyang University SCH

Baseline CAG

Baseline CAG

Difficult wiring d/t angulated calcified lesion

- 7-Fr. XB 3.5, SH guiding catheter through a Rt.radial a.
- Filder-FC wire

In particular, wiring may be difficult due to the resistance of angulated, heavily calcified plaque at the lesion site. Guidewire could not be inserted to the LAD.

What shall we do?

'Double layer lumen' Catheter

- Crusade micro-guide catheter
- Filder-FC wire

Rotational atherectomy

Rotational atherectomy was performed using 1.25 mm burr and 1.5 mm burr

The angiogram after Rota-procedure showed slightly improvement of plaque morphology and LAD flow.

Final angiogram

9-month FU CTA

How could we overcome the diffuse calcified lesions?

1.Rotational atherectomy

Rota+BMS vs Rota+DES

Procedural & Clinical Results

Rota + BMS (n = 284)

Rota + DES (n = 130)

2. 'Child' in 'Mother' Catheter

≥ 6F mother catheter

5F child cath. (20cm longer than mother cath. Heartrail ST01)

The Heartrail (Terumo, Japan) "mother-and-child" catheter comprises a flexible-tipped long 5 Fr catheter advanced through a standard 6 Fr guiding catheter to deeply intubate the target vessel.

It provides enough back-up support and enhances stent delivery by reducing the frictional forces encountered within calcified and diseased arteries

Pros

- Child catheter goes across the stenotic lesion
- No risk of stent dislocation
- No risk of DES polymer peeling off

Cons

- Vessel injury
- Air embolism
- Careful monitoring distal coronary pressure

3. Exchange the guide catheter with strong back up support

We need a additional support for the safe DES delivery.

Catheter selection

RCA; Amplatz, Hockey...

LCA; XB, EBU, Amplatz

"Double wire technique" to exchange the guide catheter

4. 'Double layer lumen' Catheter

- Good shaft maneuverability distal shaft with slender flexible tip flexible and strong proximal shaft
- Good GW movement through the "double layer lumen"

Think Creative - Breakthrough Stop Stereotyping