Transcatheter Aortic Valve Implantation Management of risks and complications

TAVI Summit, Seoul, Korea, Spetember 3rd, 2011

Alain Cribier University of Rouen, France

Complications of TAVI

Depending on valve model, approach, and definition used (VARC?)

Prevention of complications

1) Screening phase

Patient selection *Clinical indications & Relative contra-indications* All bad candidates for AVR are not good candidates for TAVI

-Life expectancy compromized (comorbidities)

- -Low LVEF with no contractility reserve
- -Bulging septum intraventricular gradient
- -Supra-valvular calcified stenosis
- -Severely calcified bicuspid valve
- -Low LM insertion and no dilated sinus
- -Bulky calcified leaflets
- -Specific contra-indications to TA approach

Prevention of THV embolization, paravalvular AR or aortic rupture

Valve sizing

SAPIEN and **SAPIEN XT**

Any progress in annulus sizing?

No gold standard technique

Dynamic sizing by aortography per-BAV Aortogram during 23mm balloon inflation

Prevention of THV embolization paravalvular AR or aortic rupture

Valve anatomy calcium distribution, calcific nodules: TTE, TEE, CT

Prevention of coronary occlusion

Distance Ostium-AnnulusDilated or not dilated sinus?

Ostia-LM should be > 10mm

Prevention of coronary occlusion

Aortogram during pre-dilatation>

Prevention of vascular complications

CT Scan

Minimal internal diameters

BASIC GUIDELINES NOVAFLEX

Minimal arterial sizes

Calcifications	18F	19F
Grade 0	6mm	6.5mm
Grade 1	6.5mm	7mm
Grade 2	7mm	7.5mm
Grade 3 (circonf)	7.5mm	8mm

Prevention of complications

2) Per-procedure

200 or 220 bpm, 180 bpm acceptable 150 bpm in case of severe LV depression

6F Medtronic "Soloïst"

pacing lead

kV 68 mA 158 D 55 RAO 1" / CAUD 4" Relecture

Prevention of THV migration

Aortography: reference view

Do aortogram during RVP

Valve delivery

- Sheath at the level of the double marker on novaflex (stability)
- Holding the balloon <u>fully inflated 5 sec</u> decreases recoil and paravalvular AR
- <u>The full quantity of</u> contrast must be administered
- Final valve size is volume dependent !

Management of Complications Vascular complications

Never remove the sheath without contra-lateral contrast injection

Have all type/sizes of occlusion balloons, covered and non-covered stent available

Consider femoral repair

Critical to be prepared to deal with femoro-iliac complications

Iliac/femoral rupture after sheath removal (same patient) COVERED STENT

Iliac/femoral rupture after sheath removal (Rouen)

Super Arrow-Flex sheath 10F from LFA Vascular Stent Graft Fluency Plus 13.5 / 40m (BARD)

Complications Rupture of the annulus

Higher risk in case of porcelain aorta and angulated aorta

Almost always related to balloon or valve oversizing:

Prefer smaller size in heavily calcific valve, porcelain aorta, extremely old patients

Rupture of the annulus by valve oversizing Annulus 20.5mm on TTE: 25 mm THV, 90y-old woman

Rupture of the annulus at the low border of the stent + Pericardial tamponade

Rupture of the annulus Annulus 21.5 on TTE, 25 mm THV 90y-old woman: VALVE-IN-VALVE

Rupture of the annulus Annulus 21.5 on TTE, 25 mm THV 90y-old woman

Complications Valve embolization

TECHNICAL ERROR

- [~] THV positioned too high
- *Valve not inflated fully*
- [~] Pacing stopped prematurely or lack of capture
- [~] Under THV sizing or annulus too large
- [~] THV positioned too ventricular

BULGING SEPTUM

Explanation: loss of capture during RVP

THV Deployed In Distal Aorta

Bulging septum: Transapical case

Bulging septum: Transapical case

Bulging septum: Transapical case

Valve embolization: LV

- Aortogram post reveals severe AI secondary to valve being too low
 - Valve embolized into LV

Complications

Valve malpositioning

Valve in Valve for Malpositioning

During deployment, valve migrated cranially

 Valve is clearly above annulus and not in stable position

Valve in Valve for Malpositioning

 Second valve positioned inferiorly and deployed to secure the first valve and correct paravalvular leak

Valve in Valve for malpositioning

Complications

Left main occlusion

Left Main Occlusion

Preventive wiring of the LAD for urgent post-THV delivery stenting has been done but LM stenting can be successfully achieved in only 50% of the cases. Never hesitate to decline TAVI !

THV deployment led to left main occlusion by calcific native aortic valve leaflet

Conclusions

- In spite of optimal training and proctoring programs, the learning curve for TF-TVAI is permanent, on a case after case basis

- The success and safety of the procedures rely on the respect of protocols and recommendations. *Each step is a succession of "important details". Each omission may be life threatening*

- An optimal partnership within the team is crucial for both patient selection and procedure