Current Consensus Standards for OCT

Evelyn Regar
Thoraxcenter
Erasmus Medical Center
Rotterdam, NL
Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis

Francesco Prati, Evelyn Regar, Gary S. Mintz, Eloisa Arbustini, Carlo Di Mario, Ilk-Kyung Jang, Takashi Akasaka, Marco Costa, Giulio Guagliumi, Eberhard Meinertz

Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures

Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies

A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

Guilermo J. Tareyny, MD, PhD, Writing Committee Co-Chair, Evelyn Regar, MD, PhD, Writing Committee Co-Chair, Takashi Akasaka, MD, Writing Committee Co-Chair, Tom Adriaensen, MD, Peter Barlis, MD, Hiram G. Bezzerra, MD, Brett Bouna, PhD, Nico Bruining, PhD, Jin-man Cho, MD, PhD, Sajib Chowdhury, PhD, Marco A. Costa, MD, PhD, Ranil de Silva, MD, PhD, Jouke Dijkstra, PhD, Carlo Di Mario, MD, PhD, Darias Dugic, MD, PhD, Edin Folk, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD, Nieves Gonzalez, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Nick R. Holm, MD, Yasuhiko Houns, MD, Fumiai Ikko, MD, Masanori Kurashina, MD, Janusz Kowalski, MD, PhD, Lukasz Kolotowsk, MD, Takashi Kuro, MD, PhD, Teruyoshi Kusue, MD, Hirofumi Kyono, MD, Cheung Chi Siou, MD, Guy Lamouche, PhD, David P. Lee, PhD, Martin E. Leon, MD, Akiko March, MD, Olivio Mancini, MD, Gary S. Mintz, MD, Kyotaro Mizuno, MD, Marie-angelllo Mored, MD, Sercemontini Nadir, MD, Hirose Oka, MD, Hirotsugu Otake, MD, Arkadiusz Pietrusik, MD, Francesco Pratt, MD, Lenz Ritter, MD, Maria D. Rub, MD, Johannes Rieber, MD, Eio Riga, MD, Andrew Rollins, PhD, Marcelle Rosenberg, PhD, Vassil Mibizia, MD, Patrick W. J. Serruys, MD, PhD, Kuni Shimada, MD, Toshiro Shinko, MD, Junya Shiro, MD, Eliot Siegel, MD, Stanjo Sonoda, MD, Melissa Suren, PhD, Shigeo Takahara, MD, PhD, Atsushi Tanaka, MD, PhD, Mitumitsu Tanimoto, MD, Thar Troels, MD, PhD, Shin Uemura, MD, PhD, Giovanni J. Ughi, PhD, Halsey M.M. van Beelen, PhD, Antonius F.W. van der Steen, PhD, Geert-Jan van Es, PhD, G. van Sre, PhD, Renu Varma, MD, Serqo Xromad, MD, Neil J. Weissman, MD, Gora Waz, MD

Boston, Massachusetts, The Netherlands, and Wakayama, Japan
Intravascular OCT Details of the Consensus Document

• Print
 – Introduction
 – Physical principles of IVOCT
 – Imaging protocols
 – Qualitative image interpretation
 – Quantitative assessment

• Online
 – Levels of evidence
 – Equipment for IVOCT imaging
 – IVOCT display techniques
 – Artifacts
 – Expanded info for protocols & assessment
 – Validation, specialized techniques
 – Reporting of IVOCT studies, all appendices
Intravascular OCT Details of the Consensus Document

The International Working Group
For Intracoronary OCT Standardization And Validation

Achieve Widespread Utilization of Intracoronary OCT
Standardization and validation of the technology

Consortium Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies
A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

Guillermo J. Tearney, MD, PhD, Writing Committee Co-Chair,* Evelyn Reger, MD, PhD, Writing Committee Co-Chair† Takashi Akasaka, MD, Writing Committee Co-Chair‡ Tom Adriennesos, MD, Peter Bax, MD, Himam G. Bezaa, MD, Brett Bouna, PhD, Nico Bruiining, PhD, Jin-man Cho, MD, PhD, Saqib Chowdhary, PhD, Marco A. Costa, MD, PhD, Ranil de Silva, MD, PhD, Jouke Dijkstra, PhD, Carlo Di Mario, MD, PhD, Darius Dudaek, MD, PhD, Edin Fark, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD, Nieves Gonzalez, MD, Juan F. Granada, MD, Giuio Guagliumi, MD, Nick R. Holm, MD, Yasuhito Honda, MD, Fumiaki Ikeda, MD, Masanori Kawasaki, MD, Janusz Kochman, MD, PhD, Lukasz Kolotowskii, MD, Takashi Kubo, MD, PhD, Tetsuhiyuki Kurze, MD, Hiroynuki Kyono, MD, Cheung Chi Simon Lam, MD, Guy Lamothe, PhD, David P. Lee, MD, Martin B. Leon, MD, Akiko Machita, MD, Oliva Manfiri, MD, Gary S. Mintz, MD, Kyotoshi Mizuno, MD, Marie-angelde Morel, MD, Gianmaria Nadi, MD, Hiroyuki Okano, MD, Hiroki Otake, MD, Ardianuzz Petasek, MD, Francesco Pesci, MD, Joaenz Ritter, MD, Maria D. Ruchi, MD, Johannes Rieber, MD, Maria Riga, MD, Andrew Rollins, PhD, Martise Rosenberg, PhD, Vassie Sirbu, MD, Patrick W. J. C. Serruy, MD, PhD, Kenji Shimada, MD, Toshio Shinko, MD, Jumya Shito, MD, and, MD, Melissa Suter, PhD, Stigebo Takata, MD, PhD, Mitsuayi Terashima, MD, Thim Trōell, MD, PhD, Shino Uemura, MD, PhD, Giovanni J. Ughi, PhD, Halseen M.M. van Besselcon, PhD, Antonius F.W. van der Steen, PhD, Gerrit Ann van Es, PhD, Gis van Stoor, PhD, Renu Varma, MD, Senio Wess, MD, and, the Netherlands, and Wagamama, Japan

J Am Coll Cardiol. 2012
Intravascular OCT
Details of the Consensus Document

The International Working Group
For Intracoronary OCT Standardization And Validation

International committee
- Over 300 members
- Academia
- Clinical community
- Industry
- All OCT manufacturers

Organizers
G. Tearney, T. Akasaka, E. Regar

Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies
A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

Guillermo J. Tearney, MD, PhD, Writing Committee Co-Chair;
Evelyn Regar, MD, PhD, Writing Committee Co-Chair; Takashi Akasaka, MD, Writing Committee Co-Chair;
Tom Adriaensen, MD, Peter Bullis, MD, Hiram G. Bozeman, MD, Brett Bouna, PhD,
Nico Brunning, PhD, Jin-man Cho, MD, PhD, Saqib Chowdhury, PhD, Marco A. Costa, MD, PhD,
Ranil de Silva, MD, PhD, Jouke Dijkstra, PhD, Carlo Di Mario, MD, PhD, Darius Dudek, MD, PhD,
Edin Falk, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD,
Nieves Gonzalo, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Nick R. Holm, MD,
Yasuhito Honda, MD, Fumio Ikeno, MD, Masamori Kawakami, MD, Janusz Kodman, MD, PhD,
Lukasz Koltowski, MD, Takashi Kubo, MD, PhD, Teruyoshi Kurze, MD, Hiroyuki Kyono, MD,
Cheung Chi Simon Lam, MD, Guy Lemoine, PhD, David P. Lee, MD, Martin B. Leon, MD,
Akiho Machida, MD, Olivier Manfroi, MD, Gary S. Minna, MD, Kyouchi Mizuno, MD,
Marie-angèle Mored, MD, Seemantini Naikani, PhD, Hiroyuki Obara, MD, Hirofumi Okura, MD,
Arkadiusz Pietruszko, MD, Francesco Preti, MD, Lauren Riber, MD, Maria D. Raci, MD,
Johannes Rieber, MD, Maria Riga, MD, Andrew Rollins, PhD, Marcelle Rosenberg, PhD, Vasile Sirbu, MD,
Patrick W. J. C. Serruy, MD, PhD, Kenri Shimada, MD, Toshio Shinke, MD, Junya Shiro, MD,
Sada, MD, Melissa Suter, PhD, Stigheo Takanada, MD, PhD,
Mitsuyasu Terasima, MD, Thim Tjeels, MD, PhD, Shinoh Uemura, MD, PhD,
Giovanni J. Ughi, PhD, Halse J.M. van Beusel, MD, Antonius F.W. van der Steen, PhD,
Gerit Ann van Es, PhD, Gijs van Soest, PhD, Remi Varma, MD, Senji Watanabe, MD,
Narumi Watanabe, MD, Atsuo Watanabe, MD,

akura, the Netherlands; and Wakayama, Japan
Intravascular OCT
Details of the Consensus Document

The International Working Group
For Intracoronary OCT Standardization And Validation

- 11 International meetings held
 2008-2012:
- DICOM Standard IV OCT
- Consensus document
Intravascular OCT
Details of the Consensus Document

The format is patterned after the JACC Clinical Expert Consensus Document on “Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies” by Mintz et al. 2001

Because of the similarities terminology and methods that exist for IVUS have been adopted for IVOCT, whenever possible.
Intravascular OCT
Details of the Consensus Document

The International Working Group
For Intracoronary OCT Standardization And Validation

- IWG-IVOCT subgroups were tasked with summarizing:
- what is known to date
- common pitfalls or roadblocks
- what is not known to date within their respective topic area.

Guillermo J. Tearney, MD, PhD, Writing Committee Co-Chair,*
Evelyn Reyes, MD, PhD, Writing Committee Co-Chair†
Takashi Akasaka, MD, Writing Committee Co-Chair‡
Tom Adrianyon, MD, Peter Boulitas, MD, Hisan G. Bozeman, MD, Bret Bouma, PhD,
Nico Bruining, PhD, Jin-mi Cho, MD, PhD, Saqib Chowdhary, PhD, Marco A. Costa, MD, PhD,
Ranil de Silva, MD, PhD, Joule Diestre, PhD, Carlo Di Mario, MD, PhD, Darius Dudrick, MD, PhD,
Edin Falk, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD,
Nieves Gonzalez, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Nick R. Holm, MD,
Yasuhiro Honda, MD, Fumiaki Ikeno, MD, Massao Kawasaki, MD, Jansz Kochman, MD, PhD,
Łukasz Koltowski, MD, Takashi Kubo, MD, PhD, Teruyoshi Kurose, MD, Hiroshi Kiyou, MD,
Cheung Chi-simon Lam, MD, Guy Lanouette, PhD, David P. Lee, MD, Martin E. Leon, MD,
Akiko Machida, MD, Oliviero Mandini, MD, Gary S. Mirza, MD, Kyotomi Mizuno, MD,
Marie-angèle Morel, MD, Sciravantu Naikam, PhD, Hiroyuki Obara, MD, Hirose Otsuki, MD,
Arkadiy Piskorsk, MD, Francesco Prati, MD, Lenz Ritter, MD, Maria D. Ruch, MD,
Johannes Rieger, MD, Maria Riga, MD, Andrew Rollins, PhD, Marcel Roseneberg, PhD, Vasile Sirbu, MD,
Patrick W. J. C. Smits, MD, PhD, Kenji Shimada, MD, Toshiro Shinke, MD, Junya Shito, MD,
Yada, MD, Melissa Suter, PHD, Shigeo Takashita, MD, PhD,
Mitsuyasu Terashima, MD, Thim Tsevis, MD, PhD, Shino Uemura, MD, PhD,
Giovanni J. Ughi, PhD, Halsey M.M. van Beuseloon, PhD, Antonius F.W. van der Steen, PhD,
Gerit-Aann van Es, PhD, Gis van Soest, PhD, Remi Varma, MD, Seung Woxmad, MD,
Yuuki Xiki, MD, Giorgi Zezzi, MD

Vol. 60, No. 12, 2012
ISSN 0735-1097/C/12 (US) doi:10.1016/j.jacc.2011.09.079

Clinical Research

J Am Coll Cardiol. 2012

For Intracoronary OCT Standardization And Validation

The International Working Group
For Intracoronary OCT Standardization And Validation

- IWG-IVOCT subgroups were tasked with summarizing:
- what is known to date
- common pitfalls or roadblocks
- what is not known to date within their respective topic area.

Guillermo J. Tearney, MD, PhD, Writing Committee Co-Chair,*
Evelyn Reyes, MD, PhD, Writing Committee Co-Chair†
Takashi Akasaka, MD, Writing Committee Co-Chair‡
Tom Adrianyon, MD, Peter Boulitas, MD, Hisan G. Bozeman, MD, Bret Bouma, PhD,
Nico Bruining, PhD, Jin-mi Cho, MD, PhD, Saqib Chowdhary, PhD, Marco A. Costa, MD, PhD,
Ranil de Silva, MD, PhD, Joule Diestre, PhD, Carlo Di Mario, MD, PhD, Darius Dudrick, MD, PhD,
Edin Falk, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD,
Nieves Gonzalez, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Nick R. Holm, MD,
Yasuhiro Honda, MD, Fumiaki Ikeno, MD, Massao Kawasaki, MD, Jansz Kochman, MD, PhD,
Łukasz Koltowski, MD, Takashi Kubo, MD, PhD, Teruyoshi Kurose, MD, Hiroshi Kiyou, MD,
Cheung Chi-simon Lam, MD, Guy Lanouette, PhD, David P. Lee, MD, Martin E. Leon, MD,
Akiko Machida, MD, Oliviero Mandini, MD, Gary S. Mirza, MD, Kyotomi Mizuno, MD,
Marie-angèle Morel, MD, Sciravantu Naikam, PhD, Hiroyuki Obara, MD, Hirose Otsuki, MD,
Arkadiy Piskorsk, MD, Francesco Prati, MD, Lenz Ritter, MD, Maria D. Ruch, MD,
Johannes Rieger, MD, Maria Riga, MD, Andrew Rollins, PhD, Marcel Roseneberg, PhD, Vasile Sirbu, MD,
Patrick W. J. C. Smits, MD, PhD, Kenji Shimada, MD, Toshiro Shinke, MD, Junya Shito, MD,
Yada, MD, Melissa Suter, PHD, Shigeo Takashita, MD, PhD,
Mitsuyasu Terashima, MD, Thim Tsevis, MD, PhD, Shino Uemura, MD, PhD,
Giovanni J. Ughi, PhD, Halsey M.M. van Beuseloon, PhD, Antonius F.W. van der Steen, PhD,
Gerit-Aann van Es, PhD, Gis van Soest, PhD, Remi Varma, MD, Seung Woxmad, MD,
Intravascular OCT Consensus
Level of Evidence

High
Homogeneous evidence from multiple, well-designed, cohort (descriptive) trials, each involving a number of samples to be of sufficient statistical power or multiple histopathologic correlative studies of sufficient statistical power.

Medium
From at least 1 well-designed trial, or a single histopathologic correlative study involving a number of samples to be of sufficient statistical power.

Low
Evidence based on clinical experience, descriptive studies, or reports of expert committees or histopathologic correlative case studies.
Fibrous plaque
- high backscattering and
- relatively homogeneous IVOCT signal

Sometimes the IEM or EEM may be identified in fibrous plaques.

Caution should be exercised when characterizing a lesion as fibrous plaque if the IEM or EEM cannot be identified. Sometimes, the limited penetration depth of IVOCT does not allow the accurate detection of deep signal-poor areas possibly representing necrotic core or calcium behind fibrous tissue.

Fibrous plaques by IVOCT may be composed of collagen or smooth muscle cells. Although it has been postulated that proteoglycans and type III collagen have a lower OCT signal intensity, the relationship between the OCT signal and type III collagen and proteoglycans has not yet been established.
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

<table>
<thead>
<tr>
<th>Normal vessel wall</th>
<th>Atherosclerosis</th>
<th>Thrombus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J Am Coll Cardiol. 2012

The International Working Group
For Intracoronary OCT Standardization And Validation
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

Normal vessel wall
Atherosclerosis
Thrombus

Fibrous Fibrocalcific Lipid pool Fibrous cap Rupture

J Am Coll Cardiol. 2012
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

<table>
<thead>
<tr>
<th>Atherosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrous</td>
</tr>
<tr>
<td>Fibrocalcific</td>
</tr>
<tr>
<td>Lipid pool</td>
</tr>
<tr>
<td>Fibrous cap</td>
</tr>
<tr>
<td>Rupture</td>
</tr>
</tbody>
</table>
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

Atherosclerosis
Fibrocalcific Lipid pool Fibrous cap Rupture

Fibrous plaque with IEM (green) and EEM (yellow)

Fibrous plaque without IEM and EEM (white)
Fibrocalcific plaque showing circumferential signal-poor heterogeneous region with well-delineated borders.
IVOCT histopathologic correlative studies showed a good correspondence between signal-poor IVOCT regions with poorly defined or diffuse borders and a broader histopathologic category known as “lipid pool”
In these studies, a lipid pool corresponds histologically to either a necrotic core or a region within pathological intimal thickening that contains extracellular lipid or proteoglycans.

At present, there are no definitive published studies directly comparing IVOCT lipid pool–containing plaques with necrotic core by histology, and as a result, the evidence level was determined to be LOW for IVOCT delineation of NECROTIC CORE.
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

Atherosclerosis
Fibrous
Fibrocalcific
Lipid pool
Fibrous cap
Rupture

OCT thin-capped fibroatheroma (OCT-TCFA)

Fibroatheroma with poorly defined borders and a cap

Fibroatheroma with thin fibrous cap

J Am Coll Cardiol. 2012
Ruptured plaques frequently occur in the context of OCT-TCFAs and show features of intimal tearing, disruption, or dissection of the cap.
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: High

<table>
<thead>
<tr>
<th>Normal vessel wall</th>
<th>Atherosclerosis</th>
<th>Thrombus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differentiation Red vs White
Macrophages

may be seen as signal-rich, distinct, or confluent punctate regions that exceed the intensity of background *speckle* noise.
Intravascular OCT Consensus
Atherosclerotic Plaque Assessment

Evidence level: Low

Intimal Vasculature: Can appear as signal-poor voids that are sharply delineated and can usually be followed in multiple contiguous frames.

Cholesterol Crystals: May appear as thin, linear regions of high intensity, usually associated with a fibrous cap or necrotic core.

Erosion: May be composed of IVOCT evidence of thrombus, an irregular luminal surface, and no evidence of cap rupture evaluated in multiple adjacent frames.
The definitions of Lesion and Reference Segment from JACC IVUS Consensus Document have been adopted for IVOCT.

- **Proximal reference.**
 The site with the largest lumen proximal to a stenosis but within the same segment (usually within 10 mm of the stenosis, with no major intervening branches). This may not be the site with the least plaque.

- **Distal reference.**
- **Largest reference.**
- **Lesion.**
- **Stenosis.**
- **Worst stenosis (T-1).**
- **Secondary stenoses (T-2, T-3, and so on).**
Measurements should be made on good-quality images that do not contain artifacts. The image should be correctly calibrated for z-offset and refractive index.
Lumen Measurements
Once the lumen has been traced, the measurements by IVOCT are similar to that for IVUS (see Mintz et al. JACC 2001)

IEM Measurements
For plaques in which the IEM can be identified, the preceding measurements can be made for the IEM, including the IEM CSA similar to that for IVUS (see Mintz et al. JACC 2001)

EEM Measurements
Note that IEM measurements can also be measured for the EEM, if it is identified in the IVOCT image.
It is therefore recommended that when reporting these measurements, the use of either IEM or EEM be clearly specified.
TCFA diagnosed by histology has been associated with plaque rupture and coronary thrombosis at autopsy.

Future natural history studies should be conducted to demonstrate the risk of OCT-TCFAs and macrophage-rich plaques for enabling the identification of patients at higher risk for future coronary events.
Intravascular OCT Consensus

Stent Assessment

<table>
<thead>
<tr>
<th>Evidence level: High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Intravascular OCT Consensus
Stent Assessment

Evidence level: High

Prolapse
Apposition
Malapposition
Dissection
Thrombus
Intravascular OCT Consensus
Stent Assessment: Strut Coverage

Struts are termed *covered* by IVOCT if tissue can be identified above the struts.

Struts are dubbed *uncovered* by IVOCT if no evidence of tissue can be visualized above above the struts.
At present, IVOCT has not been shown to allow the visualization of endothelium, but this question is still under investigation.

Additionally, the precise nature of tissue coverage has not been demonstrated, be it fibrin, endothelium, thrombus, neointimal, or other.

It has been postulated that IVOCT strut coverage tissue characteristics such as backscattering intensity may provide further discrimination of IVOCT strut coverage tissue type; however, it was believed that this topic merited further investigation. In addition, the significance of the intensity of the strut’s backscattering has not been established.
Restenosis by IVOCT may be visualized as signal-poor, layered, or signal-rich tissue overlying stent struts.

The relationship between the signal intensity of restenosis seen by IVOCT and the underlying tissue composition has only been documented in rare cases and is not generally understood.
Intravascular OCT Consensus
Stent Measurements

Stent area measurements follow that of the JACC IVUS Consensus Document (Mintz et al. JACC 2001), modified in part

Strut apposition distance
Distance between the abluminal surface of the strut and the luminal surface of the artery wall.

Some investigators have estimated the location of the abluminal surface of the strut by drawing a line from the luminal surface of the strut toward the artery wall, where the line has a length that is equivalent to the known strut plus polymer (if present) thickness. The end of this line is an estimate of the location of the abluminal surface of the strut. If it is separated abluminally from the luminal contour of the vessel, the strut is considered to be malapposed.
Stent area measurements follow that of the JACC IVUS Consensus Document (Mintz et al. JACC 2001), modified in part.

Strut apposition distance
Distance between the abluminal surface of the strut and the luminal surface of the artery wall.

OCT strut coverage thickness
Distance between the luminal surface of the covering tissue and the luminal surface of the strut.
IVOCT is capable of measuring the tissue overlying a strut within the resolution of the OCT system. The biological and clinical significance of OCT strut tissue coverage thickness that is measured to be less than, equal to, or near the axial resolution of the OCT system is not well understood.
Consensus documents summarize current knowledge and put it into perspective.

As such, they can be instrumental for the clinical application.

OCT has high level of evidence when it comes to lesion assessment in native vessels as well as after PCI and stent implantation.

Areas with need for further validation are clearly identified (especially the prospective validation of OCT findings).

A broad participation is key to move the field forward!
Intravascular OCT Consensus

Next Steps

- **DICOM Structured Report (SR) Template**

 SR allows OCT specific measurements and findings to be exported to PACS and become part of the Patient’s Electronic Medical Record

- **Phantoms (Guy Lamouche)**

 Industrial, Tech Research and Development
 Preclinical and clinical applications
 Training of (new) users

- **Bifurcations (Tom Adriaenssens, Niels Holm)**

 Assessment pre and post stent, follow-up
 Reporting

www.octstandardization.org