Anatomy and Pathology of
Left main coronary artery

G Nakazawa
Tokai Univ.
Kanagawa, Japan
Anatomy – Definition

✓ Left main coronary artery (LMCA): The proximal segment of the left coronary artery that arises from the left aortic sinus just below the sinotubular junction to its bifurcation into the LAD and LCX

✓ LMCA is responsible for supplying approximately 75% of the left ventricular cardiac mass
Anatomy

- LMCA is generally divided into 3 anatomic regions
 1. Ostium (Origin of LMCA from aorta)
 2. Middle portion
 3. Distal (Bifurcation) portion
- Approximately one-third of cases have triflication
- The Average length of LMCA: $10.8 \pm 5.2\text{mm}$ ($2\text{-}23\text{mm}$)
- The Average angle of terminal brunches: $87 \pm 29^\circ$ ($40\text{-}165^\circ$)
- Positive correlation: length and angle

Reig J et al. Clin Anat 2004
Anatomy Specific Features…

- Ostium portion of LMCA is rich in aortic smooth muscle cells and elastic fibers

 ⇒ Elastic recoil

- Bifurcation at the distal portion

 ⇒ Flow disturbance (Susceptible to develop the plaque)
 ⇒ Procedural Complexity
Anatomic features and the development of atherosclerotic plaque in left main coronary artery: IVUS data

<table>
<thead>
<tr>
<th>Location</th>
<th>Short LMCA (<10mm) (n=44)</th>
<th>Long LMCA (≥10mm) (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostium</td>
<td>55%</td>
<td>18%</td>
</tr>
<tr>
<td>Middle</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>Distal bifurcation</td>
<td>38%</td>
<td>77%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stenosis Location</th>
<th>Ostial stenosis (n=32)</th>
<th>Non-ostial stenosis (n=55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumen area (mm²)</td>
<td>6.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Plaque burden (%)</td>
<td>62</td>
<td>80</td>
</tr>
<tr>
<td>Remodeling index</td>
<td>0.87</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Plaque Formation – Luminal Narrowing

Mean cross sectional luminal narrowing, left main, by age, sudden coronary death

Data from CVPath sudden cardiac death registry

N=194
Plaque Formation in LMCA

Maximal cross sectional luminal narrowing, 194 cases of sudden coronary death

Location of stenosis (>75%)

N=194
Patients with >75% LM stenosis

Proximal LAD and/or LCX involvement

- LM+LCX (33%)
- LM+LAD (27%)
- LM+LAD+LCX (33%)
- LM only (7%)
Plaque Progression in LMCA

PIT Early NC Late NC TCFA
Advanced plaque in LMCA

Intraplaque hemorrhage

Erosion

Plaque rupture
Types of plaque in LMCA in sudden coronary death cases

All sudden coronary death cases (n=374)

- Pathologic intimal thickening (157) - 42%
- Fibroatheroma (82) - 22%
- Fibrocalcific (63) - 17%
- Adaptive intimal thickening (19) - 5%
- Fibrous plaque (13) - 4%
- Healed rupture (12) - 3%
- Acute rupture / fissure (8) - 2%
- Fatty streak (8) - 2%
- Nodular calcification (6) - 2%
- Nodular calcification (6) - 1%
- Thin-cap fibroatheroma (5) - 1%
- Erosion (1) - 1%
Types of plaque in LMCA in sudden coronary death cases with stenosis $\geq 50\%$

Cases with stenosis $\geq 50\%$ in sudden coronary death (n=171)

- **Fibroatheroma (53)**
- **Fibrocalcific (45)**
- **Pathologic intimal thickening (38)**
- **Healed rupture (10)**
- **Nodular calcification (6)**
- **Acute rupture / fissure (5)**
- **Thin-cap fibroatheroma (5)**
- **Fibrous plaque (5)**
- **Fatty streak (3)**
- **Erosion (1)**
LM Length and Luminal Narrowing, Calcification

Sudden coronary death victims with LM luminal narrowing ≥50% (n=71)

- **Luminal area stenosis of LM**
 - Longer left main had severe luminal narrowing.
 - No significant relationship between LM length and calcification.

- **Calcification (% Area)**
 - Calcification was the greatest in prox LAD and the least in prox LCX.

<table>
<thead>
<tr>
<th>LM length (mm)</th>
<th><10 (n=20)</th>
<th>≥10, <15 (n=35)</th>
<th>≥15 (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Main</td>
<td>p=0.48</td>
<td>p=0.19</td>
<td>p=0.85</td>
</tr>
<tr>
<td>Prox LAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prox LCX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plaque distribution in bifurcation lesion

LM PLAD PLCx RI
Plaque Formation in Bifurcation

Plaque thickness

Plaque Formation

LM + LAD severe stenosis
IVUS classification for LMCA bifurcation plaque distribution

Why so susceptive to get diseased?

Steady Laminar Blood Flow

Shear Stress

NO
PGI₂
tPA
Thrombomodulin

Antithrombogenic
Antimigration

Pro-survival
Endothelium
Smooth Muscle

Antigrowth
TGF-β

Flow Reversal

Low Mean Shear

Prothrombotic
Promigration

Pro-apoptosis
Endothelium
Smooth Muscle

Progrowth
Ang II
PDGF
Endothelin-1

Atherosclerotic Lesion
Pathology of Left Main Coronary Artery Stenting

Data from CVPath Autopsy Registry
BMS vs DES in LMCA @ Autopsy

Vorwahl M et al. ACC2010

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>BMS (n=15)</th>
<th>DES (n=12)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>56.0 ± 12.8</td>
<td>73.2 ± 8.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Gender (f/m)</td>
<td>4/11</td>
<td>3/9</td>
<td>0.53</td>
</tr>
<tr>
<td>Duration of Survival (days)</td>
<td>189 ± 206</td>
<td>212 ± 324</td>
<td>0.98</td>
</tr>
<tr>
<td>CABG</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion Characteristics</th>
<th>BMS (n=15)</th>
<th>DES (n=12)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent lesion length (mm)</td>
<td>16.2 ± 5.5</td>
<td>29.6 ± 18.0</td>
<td>0.02</td>
</tr>
<tr>
<td>Isolated Left Main</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bifurcation (single vessel)</td>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bifurcation (>2 vessels)</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indication</th>
<th>BMS (n=15)</th>
<th>DES (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS/AMI</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Stable Angina</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>
BMS vs DES in LMCA @ Autopsy

<table>
<thead>
<tr>
<th>Pathology</th>
<th>BMS > 30 days (n=11)</th>
<th>DES > 30 days (n=10)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>288 ± 189</td>
<td>340 ± 374</td>
<td>0.7019</td>
</tr>
<tr>
<td>Stent diameter</td>
<td>3.73±0.67</td>
<td>3.95±0.57</td>
<td>0.4437</td>
</tr>
<tr>
<td>Vessel Diameter</td>
<td>5.73±1.00</td>
<td>5.93±0.93</td>
<td>0.6532</td>
</tr>
<tr>
<td>Vessel Area</td>
<td>19.47±4.67</td>
<td>20.25±4.61</td>
<td>0.7037</td>
</tr>
<tr>
<td>Stent Area</td>
<td>7.6±1.93</td>
<td>8.51±2.52</td>
<td>0.3725</td>
</tr>
<tr>
<td>Plaque Area</td>
<td>11.84±3.85</td>
<td>11.73±3.46</td>
<td>0.9476</td>
</tr>
</tbody>
</table>

Lumen Area

- BMS: 12, P=0.0804
- DES: 8, P=0.0804

Neointimal Area

- BMS: 6, P=0.1525
- DES: 4, P=0.1525

% Area Stenosis

- BMS: 80, P=0.1825
- DES: 60, P=0.1825

Neointimal Thickness

- BMS: 0.2, P=0.0187
- DES: 0.4, P=0.0187

Vorpahl M et al. ACC2010
Cause of Death at Autopsy with LMCA stenting

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>BMS (n=15)</th>
<th>DES (n=12)</th>
<th>p=0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRD</td>
<td>6 (40)</td>
<td>7 (58)</td>
<td></td>
</tr>
<tr>
<td>NSRD</td>
<td>4 (26)</td>
<td>4 (33)</td>
<td></td>
</tr>
<tr>
<td>NCD</td>
<td>5 (33)</td>
<td>1 (8)</td>
<td></td>
</tr>
</tbody>
</table>

SRD: Stent Thrombosis/ Restenosis
NSRCD: SCD and patent stent
NCD: other

Vorpahl M et al. ACC2010
Early Stent thrombosis
73F, Cypher stent implantation in LMCA
Sudden death 2 days after implantation
Very Late Stent Thrombosis in LM stent (PES2.5 years)

SCD seven days after discontinuation of Clopidogrel and ASS for lung biopsy.

LM: PES
LAD: PES
Diag: PES
LCX: PES
Lom: BMS

Occlusive Thrombus
Persisting Inflammation
Uncovered Struts
Fibrin Deposition

4.5 mm
Analysis of Bifurcation Stenting

From CVPath Autopsy Cases
DES implantation in Bifurcation Lesion

<table>
<thead>
<tr>
<th></th>
<th>DES (n=19)</th>
<th>BMS (n=21)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>61 ± 16</td>
<td>58 ± 17</td>
<td>0.61</td>
</tr>
<tr>
<td>Male Gender (%)</td>
<td>15 (79)</td>
<td>13 (62)</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean duration (day)</td>
<td>330 [188, 680]</td>
<td>150 [54, 540]</td>
<td>0.14</td>
</tr>
<tr>
<td>>30 days (%)</td>
<td>12 (63)</td>
<td>14 (67)</td>
<td>0.81</td>
</tr>
<tr>
<td>Technique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 stent</td>
<td>10</td>
<td>9</td>
<td>0.38</td>
</tr>
<tr>
<td>2 stent, T/ V/ Crush</td>
<td>5/ 2/ 2</td>
<td>9/ 3/ 0</td>
<td></td>
</tr>
<tr>
<td>Number of stents</td>
<td>1.9 ± 0.8</td>
<td>1.8 ± 0.8</td>
<td>0.58</td>
</tr>
<tr>
<td>Restenosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV (%)</td>
<td>1 (6)</td>
<td>7 (33)</td>
<td>0.03</td>
</tr>
<tr>
<td>SB (%)</td>
<td>3 (16)</td>
<td>6 (29)</td>
<td>0.7</td>
</tr>
<tr>
<td>Thrombosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV (%)</td>
<td>3 (43)</td>
<td>3 (43)</td>
<td>0.33</td>
</tr>
<tr>
<td>SB (%)</td>
<td>3 (43)</td>
<td>4 (57)</td>
<td>0.73</td>
</tr>
<tr>
<td>> 30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV (%)</td>
<td>9 (75)</td>
<td>5 (36)</td>
<td>0.04</td>
</tr>
<tr>
<td>SB (%)</td>
<td>5 (42)</td>
<td>2 (14)</td>
<td>0.35</td>
</tr>
<tr>
<td>Timing of thrombus</td>
<td>270 [195, 585]</td>
<td>60 [35, 105]</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Morphometric Analysis

- Neointimal thickness
- Fibrin deposition
- Uncovered struts

Lateral wall
Flow divider

1 or 2 sections

Morphometric Analysis

BMS

<table>
<thead>
<tr>
<th>BMS</th>
<th>Flow divider</th>
<th>Lateral wall</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neointimal thickness (mm)</td>
<td>0.42 ± 0.35</td>
<td>0.50 ± 0.34</td>
<td>0.15</td>
</tr>
<tr>
<td>Struts with fibrin (%)</td>
<td>24 ± 30</td>
<td>20 ± 30</td>
<td>0.31</td>
</tr>
<tr>
<td>Uncovered Strut (%)</td>
<td>17 ± 31</td>
<td>5 ± 10</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Morphometric Analysis

DES

<table>
<thead>
<tr>
<th></th>
<th>Flow divider</th>
<th>Lateral wall</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neointimal thickness (mm)</td>
<td>0.08 ± 0.07</td>
<td>0.16 ± 0.09</td>
<td>0.003</td>
</tr>
<tr>
<td>Struts with fibrin (%)</td>
<td>52 ± 27</td>
<td>36 ± 33</td>
<td>0.03</td>
</tr>
<tr>
<td>Uncovered Strut (%)</td>
<td>48 ± 33</td>
<td>13 ± 24</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Flow disturbance induced by stenting

Conclusions

- LMCA show complex plaque especially when significantly narrowed
- LAD and/or LCX involvement was common in patients with LMCA stenosis
- Atherosclerotic plaque was predominantly seen in lateral wall rather than flow divider
- Because of the plaque complexity, the deployment is important in LMCA stenting
- Flow disturbance is the primary cause of delayed arterial healing in bifurcation lesion following DES implantation