
Exercise Training: The Foundation of Cardiac Rehabilitation

6th Korean Cardiopulmonary Rehabilitation Workshop 2012

Philip A. Ades MD University of Vermont College of Medicine

Outline

- Background:
 - Established Benefits of Cardiac Rehabilitation (CR)
 - Demographic Trends
- Cardiopulmonary Fitness: Prognostic Significance
- Goals of CR Exercise:
 - Improve Fitness / Prognosis
 - Overweight Cardiac patients
 - Older Cardiac patients
- Conclusions

Core Components of Cardiac

Rehabilitation/Secondary Prevention Programs

- Patient Assessment
- <u>Exercise Training:</u> "The glue".
- Risk Factor Management:
 - Nutritional/Behavioral/ Medical
 - Lipids

- Hypertension
- Smoking Cessation
- Diabetes

- Weight ManagementPsychosocial
- Physical Activity Counseling
- Long-Term Follow-up

Post MI Survival Benefit of CR: Meta-Analyses of RCT's

	CV Mortality	Total Mortality	Comment
Oldridge	-25%	- 24%	3 year f/u
JAMA 1988			
Heran BS	-26%	- 13%	3-5 year f/u
Cochrane Database 2011			
Suaya		- 21-34%	Medicare population
JACC 2009			> 600,000, 5 year f/u

Demographic Trends in CR (1996-2006)

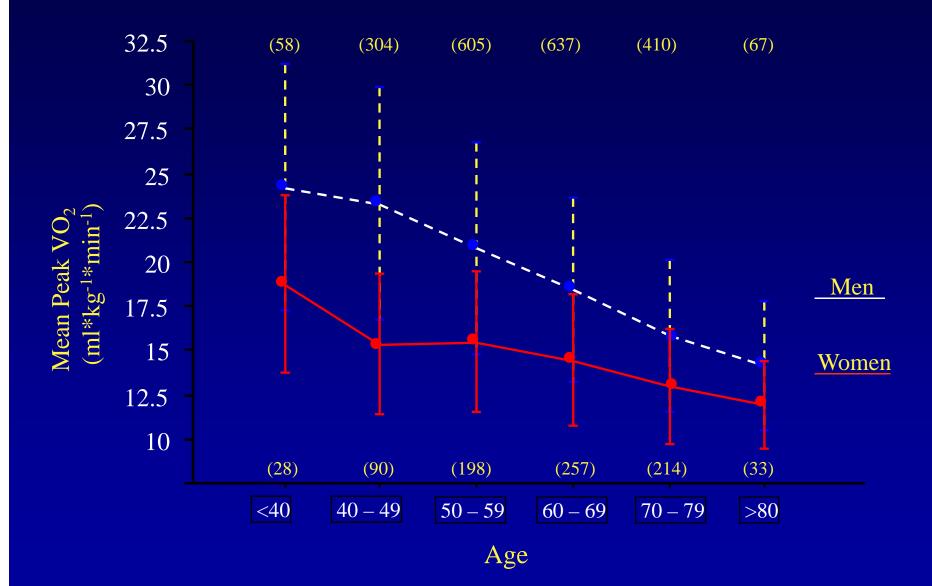
Obesity Indices at Entry into CR

	1996-1998 (N=604)	2005-2006 (N=532)	P Value*
Weight (Kg)	84.7 ± 18.3	88.5 ± 19.0	0.0023
Waist (cm)	100.8 ± 14.0	103.6 ± 14.5	0.0050
Body Mass Index (Kg/m ²)	28.5 ± 5.4	30.1 ± 5.7	<0.0001
Obesity (%)	32.5	43.8	<0.0001

* For period 1 vs. period 5, by Chi²

Audelin, Savage, Ades JCRP 2008

Demographic Trends in CR (1996-2006)


Demographic Characteristics at Entry into CR

	1996-1998 (N=604)	2005-2006 (N=532)	P Value*
Age (year)	60.6 ± 11.4	63.4 ± 11.1	0.0003
≥ 75 years (%)	10.4	16.5	0.0025

* For period 1 vs. period 5, by Chi² or Dunnett's

Audelin, Savage, Ades JCRP 2008

Aerobic Capacity Entering Cardiac Rehab.

Ades PA, Savage PD, Brawner CA, Keteyian SJ. Circulation. 2006 ;11:2706-12

Current Profile CR Participants

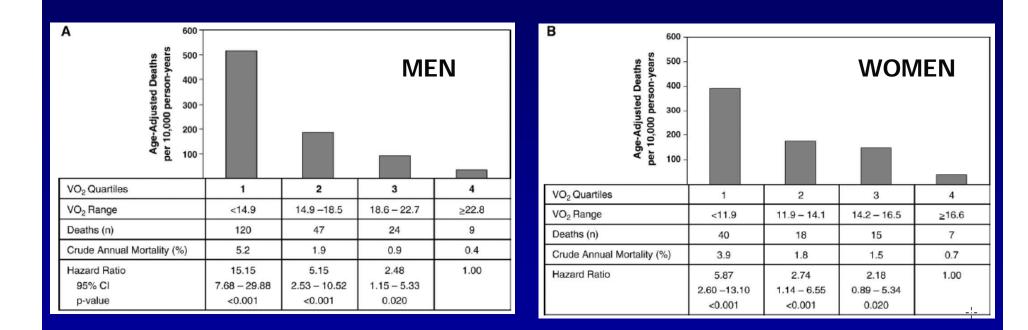
- > 80% are <u>Overweight</u> (BMI > 25 kg/m²)
 -> 50% Have Metabolic Syndrome
- <u>Older</u> : Mean Age > 64 years, 1 of 6 are >75 years

• *<u>Remarkably Unfit</u>*: (50% below age norms)

- Fitness predicts prognosis

Prognostic Significance of Aerobic Fitness in Cardiac Rehabilitation

• Studies of Kavanagh, Keteyian, Suaya.

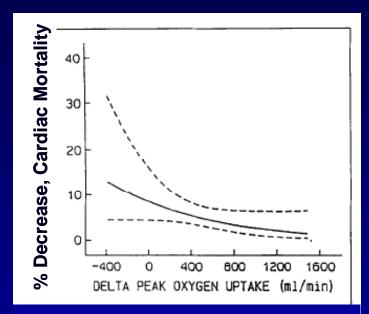

Fitness on Prognosis (Cardiac Death) in CR: Toronto Experience

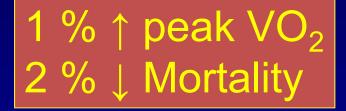
- 12,169 men entering CR*, (mean age 55.0 years)
 - VO₂ < 15.0 ml/kg/min RR 1.0
 - VO₂ 15-22 ml/kg/min RR 0.62
 - VO₂ > 22 ml/kg/min RR 0.39
- 2,380 Women** (mean age 59.7 years)
 - VO₂ < 13 ml/kg/min RR 1.0
 - VO₂ > 13 ml/kg/min RR 0.5
 - In cross sectional analysis, 1ml/kg/min higher VO2 associated with 10% lower cardiac mortality

* Kavanagh, Mertens, Hamm et al. Circulation 2002. 106:666-671 **Kavanagh, Mertens, Hamm et al. JACC 2003. 42: 2139-2143

Peak Aerobic Capacity Predicts Prognosis in CAD*

Cardiac Rehabilitation Population (N = 2,812 1996-2004)


*Keteyian, Savage, Ades, et al. Am Heart J 2008;156:292-300


CR on Survival in Older Cardiac Patients

Suaya et al JACC 2009

- N = >600,000 U.S. Medicare Patients (Age \geq 65)
- 5 Year Follow up
- Mortality Reduction 21-34% depending upon statistical technique (Propensity Matching, Regression Analyses, Instrumental Variables)
- Benefits manifest in all patient subsets (men, women, MI, CABG, CHF)

PROGNOSTIC VALUE OF <u>**CHANGE</u> IN PEAK VO₂*</u>**

*Vanhees L, et al. Am J Cardiol 1995;76:101 - 1019

CR Exercise Protocols Largely Unchanged Since 1970's

NEHDP: A Multicenter U.S. Randomized Trial of Exercise Post-MI. Shaw: Am J Cardiol 1981 48:39-46 (Performed 1976-1979)

- 25 minutes Treadmill Walking 5-10 min cycling
- 3 times per week, ECG monitored
- Intensity at 70-85% Max HR
- Yields a fitness improvement of <u>+</u> 15% of peak aerobic capacity (Peak VO₂)

Training Response in CR

Peak VO₂ (ml/kg/min)

	Baseline	4 months	P Value
All	18.3 <u>+</u> 5.9	21.4 <u>+</u> 6.8 (+ 17%)	<0.0001
Men	19.3 <u>+</u> 6.1	+ 18%	< 0.0001
Women	14.5 <u>+</u> 3.9	+ 12%	< 0.0001

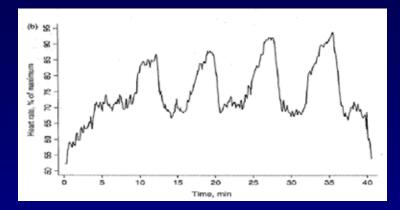
Ades PA, Savage PD, Brawner CA, Keteyian SJ. Circulation. 2006 ;11:2706-12

Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients

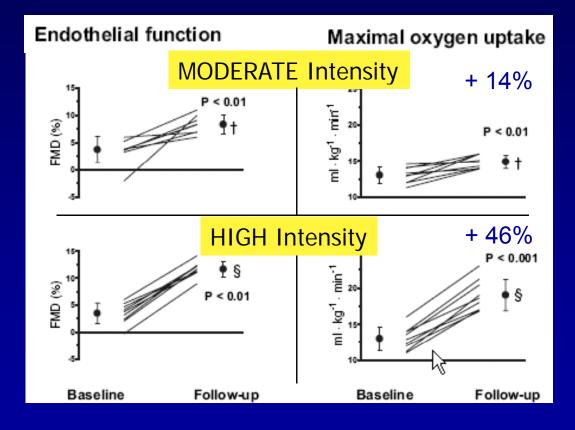
A Randomized Study

Ulrik Wisløff, PhD; Asbjørn Støylen, MD, PhD; Jan P. Loennechen, MD, PhD; Morten Bruvold, MSc; Øivind Rognmo, MSc; Per Magnus Haram, MD, PhD; Arnt Erik Tjønna, MSc; Jan Helgerud, PhD; Stig A. Slørdahl, MD, PhD; Sang Jun Lee, PhD; Vibeke Videm, MD, PhD; Anja Bye, MSc; Godfrey L. Smith, PhD; Sonia M. Najjar, PhD; Øyvind Ellingsen, MD, PhD; Terje Skjærpe, MD, PhD

Circulation. 2007;115:3086-3094.


- Randomized Controlled Trial
- 27 Patients (age=75), post-MI Chronic Heart Failure
- Moderate continuous (70% peak HR) vs Interval High Intensity (95%)
- 3 x's/wk (2 onsite, 1 @ home), 12 weeks,

Exercise Training Protocols


- Interval Training Protocol
- 10' treadmill slow warm-up
- 4' intervals at 90-95% Max HR

- Repeat 4 times
- Total training period 28 minutes + warm-up
- Moderate Continuous Training
- 70-75% Max HR
- Total training period 47'

Effects of Moderate vs High-Intensity Interval Exercise in Heart Failure Patients

Wisløff U, et al. Circulation. 2007;115:3086-3094.

Aerobic Interval Training in CR

- Maximizes fitness gains, potentially favorably affecting prognosis
- In small studies has not shown increases in adverse effects.
- Has also been shown effective in patients after Bypass Surgery, with Chronic Angina, and patients with Metabolic Syndrome
- Caveats:
 - Requires one-on-one supervision
 - Patients find it less boring

Exercise for Overweight Cardiac Patients

Hypothesis: An optimal exercise program for weight reduction would maximize exercise– related caloric expenditure. High-Caloric Training in Obese Coronary Patients: A Randomized Controlled Trial (N=72)

• Classic CR Training:

3x/week <u>+ 750 cal/week</u>

- High-Caloric Training:
 - Lower Intensity, 60-65% Max
 - Primarily Walking
 - Gradually lengthen to > 45 Min/session
 - 5-7 days per week
 - Eventually burns > 3,000 Kcal/week

Both Groups received behavioral weight loss counseling. Data at 4 months and 1 year

High Caloric Exercise vs. Standard CR Exercise

At 4 Months

	High Caloric	Standard CR	
Ν	36	36	
Weight (kg)	- 8 <u>+</u> 4	- 4 <u>+</u> 5 *	
Fat Mass (kg)	- 6 <u>+</u> 4	- 3 <u>+</u> 3 *	
Peak VO ₂ (ml*kg ⁻¹ *min ⁻¹)	+ 2 <u>+</u> 4	+ 2 <u>+</u> 3	
Physical Activity Caloric Expenditure	+ 3500	+ 800	
Week 15 (kcal/week)			
* = P < 0.05 Between group			

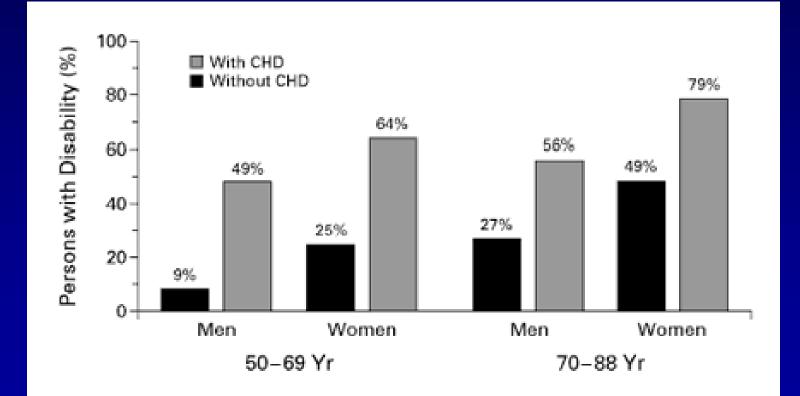
High-Caloric Exercise vs. *Standard* CR: Risk Factor Response

	Combined	High Cal.	Stnd CR	P Value B.Gps.
Glucose Disposal	+ 21% *	+26%	+13%	< 0.01
Insulin	- 25% *	-31%	-19%	<0.01
Triglyc mg/dL	-20*	-23	-6	0.07
HDL-C	+3 (8%) *	+12%	+5%	NS
Chol/HDL	-10%*	-15%	-3%	< 0.01
Mean BP mm Hg	-7 *	-11	-7	NS

Additional favorable effects on vasodilatory capacity, platelet reactivity, other clotting factors (PAI-1), and hs-C reactive protein.

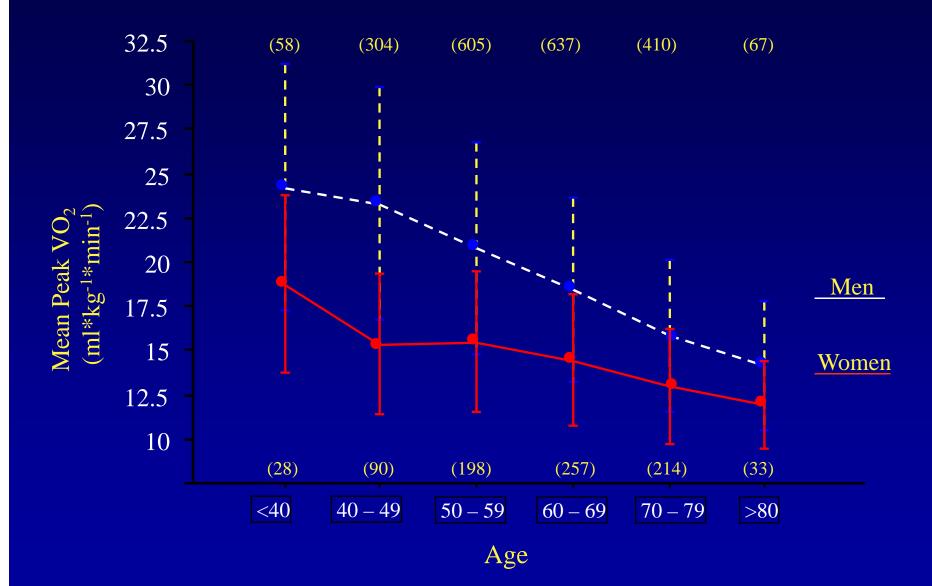
High Caloric Exercise: Conclusions "Walk Daily and Walk Far"

- High-Caloric Exercise Training is a more effective weight loss intervention for overweight CHD patients than standard CR Exercise.
- Greater Weight Loss was associated with greater changes in risk factors
- These results should alter the training approach for > 80% of CR patients in the U.S.



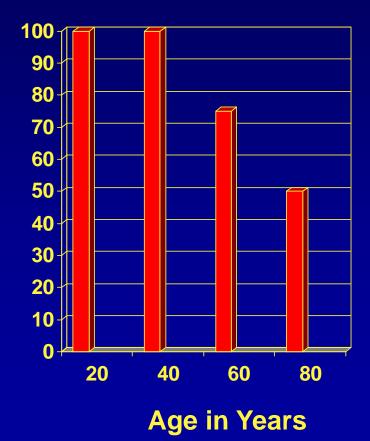
"Eat less and exercise more? That's the most ridiculous fad diet I've heard of yet!"

CR Exercise for Older Cardiac Patients


- Goals of CR in Elderly
 - Improve quality of life and physical function
 - Extend disability-free survival
- Important Role of Resistance Training

Framingham Disability Study: Effects of CHD, Age and Gender on Mobility Limitations (Disability).

Adapted from Pinsky et al Am J Public Health 1990 Figure from Ades PA. N Engl J Med 2001


Aerobic Capacity Entering Cardiac Rehab.

Ades PA, Savage PD, Brawner CA, Keteyian SJ. Circulation. 2006 ;11:2706-12

Muscle Mass with Aging

- Muscle mass begins to decrease in your 40's
- Measurably decreased by age 60
- Muscle mass increases only with intensive and prolonged resistance training.
- Increases in strength are much more readily attained.
- Prevention of muscle loss readily achievable.

Percent

Resistance Training on Physical Function in Older Women with Coronary Heart Disease

Resistance Training on Physical Function in Older Women with Coronary Heart Disease

N=51

- <u>Resistance Training</u>:
 - 3 x Weekly, x 6 months
 - 50-80% Single Repetition Max
 - -7 Exercises: (leg ext, bench press, biceps curl, shoulder press, lat pulldown, leg curl, leg press)
- <u>Control Group</u>
 - Non-strength Yoga
 - Breathing/ Stretching

Brochu et al J Appl Physiol 2002 **Ades PA** et al Med Sci Sp Ex 2003

Strength and Fitness Response

Posistanco

	<u>Resis</u>	<u>tance</u>	<u>Cont</u>	<u>rois</u>	
	Pre	Post	Pre	Post	P value (Betw Gp)
Bench Press	19 <u>+</u> 5	+ 60% *	20 <u>+</u> 3	- 2%	< 0.0001
Leg Extension	32 <u>+</u> 9	+ 46% *	39 <u>+</u> 13	+ 10% *	< 0.004
Handgrip	24 <u>+</u> 5	+ 7% *	21 <u>+</u> 8	+ 1%	< 0.02
Peak VO ₂	16 <u>+</u> 3	+ 9%	17 <u>+</u> 3	+ 2%	NS
* = P< 0.05 within group					

Controle

Physical Functional Performance Testing (CSPFP):

A battery of observed and measured functional tests

Light	Medium	<u>Heavy</u>
Scarf Pickup	Kitchen Pot-Carry	Grocery Carry
Jacket on/off	Sweeping	Suitcase on bus
Milk jug pour	Empty Wash	Stairs
Up from Tub	Load Dryer	6 minute-walk
Open Fire-Door	Make Bed	Vacuuming-(Oats ^{AHA})

Cress ME Arch Phys Med Rehabi 1996;7:1243

Resistance Training in Older Women with CHD

- Total Physical Performance Score: +24%*
- Domains:
 - Upper Body Strength + 18%*
 - Lower Body Strength + 23%*
 - Balance and Coordination + 29%*
 - Upper Body Flexibility +10%
 - Endurance +26%*
 - 6-Minute Walk +15%*

* = Improved vs. Controls (P<0.05) Brochu M, Ades PA. J Appl Physiol. 2002: 92;672-678.

Conclusions: Strength Training

- Resistance Training results in a substantial improvement in multiple domains of *measured* physical performance in older women with CHD.
- Resistance Training should be incorporated into the exercise program of older individuals, particularly older women, in cardiac rehabilitation to treat and prevent disability.

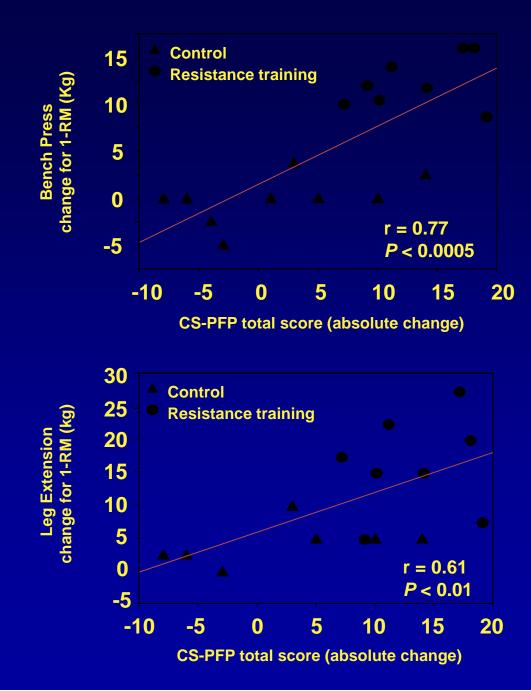
Summary

- New Approaches to CR Exercise include:
 - High-caloric expenditure exercise for weight reduction
 - Resistance Training for Older Patients, especially women
 - Interval Training to maximize fitness
- These approaches should be relevant to preventive exercise programs in the outpatient practice setting.

"What fits your busy schedule better, exercising one hour a day or being dead 24 hours a day?"

Thank You

The Weight Loss Equation:


- In Steady State: Intake = Expenditure
- Intake = Food (cal)
- Expenditure (cal)
 - Resting Metabolic Rate (60-70%)
 - Thermic Effect of food/digestion (10%)
 - *Physical Activity* (20-30%)
- Any combination of decreased intake (cal) or increased energy expenditure (cal) that equals a net deficit of 3500 Kcal results in a loss of 1 lb of weight (mostly fat).

Change in Endothelial Function, Separated by Group

High Caloric Exercise Training

- HCT is not for individuals who are significantly deconditioned (Peak VO₂ <14 ml*kg⁻¹*min⁻¹), have orthopedic/co-morbitities issues, or just hate to exercise.
- Self monitoring is important, keep exercise records, count calories.
- Use gadgets to motivate/educate (HR monitors, accelorometers, pedometers, calorie-counters on ergometers, etc).
- Be aware of overuse injuries.
- Closely monitor patients with diabetes.
- Emphasize the benefits of exercise beyond those related to weight loss.
- Maximize "lifestyle" exercise.
- Introduce in Phase II CR, Optimize in Phase III and in Community

Aerobic Training in Older CHD patients.

• Caveats:

- Importance of Intermittent/Interval Training on treadmill or walking course
- Baseline stress test is often submaximal
- Older patients will not spontaneously advance intensity
- Importance of Resistance Training
- High prevalence of balance problems and other comorbidities: arthritis, diabetes, PVD, mental depression.
- Low levels of "executive function" (includes scheduling) so be clear and/or write out instructions.