How to Overcome the Difficulty of Catheter Manipulation through Severely Tortuous Brachiocephalic Artery during Transradial Coronary Intervention

Daisuke HACHINOHE,* MD, Keigo KAYANUMA, MD, Yuuki KATAGIRI, MD, Go TAKENOUCHI, MD, Yasunobu GOHIRA, MD, Hidemasa SHISTAN, MD, Kazumasa YAMASAKI, MD, Hiroshi HASHIDOMI, MD, Tomoyuki TANI, MD, Tamaki SUYAMA, MD, Seiji YAMAZAKI, MD, and Shigeru SAITO, MD, FACC, FSCAI, FJCC, FAPSIC

The Cardiovascular Center of Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.
Transradial coronary intervention

• Transradial coronary intervention (TRI) has been commonly performed owing to its lower access site complication, early ambulation, and reduction of contrast volume.

Tortuous Brachiocephalic Artery

- During TRI, we sometimes encounter the cases in which crossing a catheter are difficult due to severely tortuosity of the brachiocephalic artery.

Conventional Bail-Out Technique

• Thicker guidewire

• Change to thinner catheter

• access-site crossover

Case Presentation

• We present a case, in which we could successfully cross the catheter through severe tortuous brachiocephalic artery and complete intervention by using 5-in-6 system after failed attempts using 0.038 inch wire and 4-in-6 system.
A 75-year-old male

• He suffered from exertional angina.

• His coronary risk factors were hypertension, dyslipidemia and smoking.
Coronary Angiography and Initial Strategy

- severe stenosis at proximal LAD

- System
 6-French EBU 3.5 Taiga® guiding catheter (Medtronic Vascular, USA)

- Access Site via right radial artery.
Severe Tortuous Brachiocephalic Artery

Guiding catheter could not cross
Thicker Guidewire

- 0.038 inch guidewire was used instead of an initial 0.032 inch wire
- Guiding catheter could not advance
Thinner Catheter

- 4.5-French Cokatte® catheter (Asahi Intecc, Japan) was used as child catheter
- Easily crossed the tortuous site
- 6-French guiding catheter could slightly pass into the ascending aorta.
Manipulation Difficulty

- When a mother catheter is advanced, a child catheter is drawn back by action-reaction law

6FrEBU®

4.5FrCokkate
Manipulation Difficulty

- Change to a 5-French ST01® catheter (Terumo, Japan) in place of Cokatte®.
Successfully Engaged to LCA

Catheters could be manipulated and engaged to left coronary artery easily.
Stent Deployment

Direct deployment of 3.5 X 15 mm XienceV® stent (Abbott vascular, USA)
Sequential Balloon Dilatation

2.5 X 15 mm Hiryu® balloon (Terumo, Japan) was dilated from LAD to diagonal branch with 12 atm

4.0 X 12 mm Quantum apex® balloon (Boston Scientific, USA) was dilated within deployed stent with 20 atm.
Final Angiography

- stent was fully expanded
- Diagonal branch achieved good distal flow.
Follow-up Angiography at 6-month
Advantage of TRI

• Reduced bleeding risk
• Improved patient comfort
• Early ambulation
• Early discharge
• Reduced costs
Disadvantage of TRI

• Difficulty in puncture
• Learning curve
• Limitation of guiding catheter size
• Limitation of bulky atherectomy devices
• Inadequate backup support
• Vessel anomaly and tortuosity
Larger-Diameter Guidewire

• Accommodate thicker guidewire, by which a tortuous vessel will straighten and a guiding catheter will get enough support and lower resistance.

Change to Smaller Size Catheter

• Downsizing of the catheter might decrease resistance and help achieve successful PCI without access-site crossover.

4-French vs 5-French

<table>
<thead>
<tr>
<th></th>
<th>4-French</th>
<th>5-French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Diameter</td>
<td>1.27 mm</td>
<td>1.50 mm</td>
</tr>
<tr>
<td>Outer Diameter</td>
<td>1.43 mm (KIWAMI®) 1.50 mm (Cokatte®)</td>
<td>1.73 mm</td>
</tr>
<tr>
<td>Flexibility</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Resistance</td>
<td>Against Vessel: Low</td>
<td>Against Mother Catheter: Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Against Mother Catheter: High</td>
</tr>
<tr>
<td>Backup Force</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Action-Reaction Law
4-French vs 5-French

<table>
<thead>
<tr>
<th></th>
<th>4-French</th>
<th>5-French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Diameter</td>
<td>1.27 mm</td>
<td>1.50 mm</td>
</tr>
<tr>
<td>Outer Diameter</td>
<td>1.43 mm (KIWAMI®) 1.50 mm (Cokatte®)</td>
<td>1.73 mm</td>
</tr>
<tr>
<td>Flexibility</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Resistance</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Backup Force</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

For Tortuous Brachiocephalic Artery Using Mother-Child Technique

<table>
<thead>
<tr>
<th></th>
<th>4-French</th>
<th>5-French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Diameter</td>
<td>1.27 mm</td>
<td>1.50 mm</td>
</tr>
<tr>
<td>Outer Diameter</td>
<td>1.43 mm (KIWAMI®) 1.50 mm (Cokatte®)</td>
<td>1.73 mm</td>
</tr>
<tr>
<td>Flexibility</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Resistance</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Against Vessel</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Against Mother Catheter</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Backup Force</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Conclusion

In the case of severely tortuous brachiocephalic artery in which guiding catheter is difficult to cross, mother-and-child technique might be useful and 5-French inner catheter might be adequate and well-balanced in terms of backup strength and resistance compared to 4-French catheter.