From ABSORB Cohort A to ABSORB III and IV Randomized Trials

Stephen G. Ellis, M.D. Professor of Medicine Director Invasive Services Co-Director Cardiac Gene Bank

Cleveland Clinic

Disclosures

Consultant, Abbott Vascular

 Co-Principal Investigator, ABSORB III and IV

Bioabsorbable Coronary Scaffold

Potential Benefits

- Minimize Neoatherosclerosis -> Less late stent thrombosis
- Restore normal vasomotor responses -> Less low shear distally -> less atherosclerosis; better peak exercise capacity
- Doesn't block CABG (esp LIMA to LAD)
- Allows better non-invasive CT evaluation

Delayed Healing - DES

Virmani et al.

SGE, 02<u>12-6, 66</u>

SIRTAX-LATE: Target Lesion Revascularization

Landmark analysis

Raber L et al. Circulation. 2011;123:2819-2828

Bern Rotterdam (n=12,339 pts) ARC Definite or Probable ST at 4 Years

Lorenz Ršber, ESC 2011

Neoatherosclerosis and Time From Stent Implant

Nakazawa et al., JACC Img 2009;2:625-8

SGE; 0412-10, 11

BVS: Absorption Seen by OCT and Pathology

Serruys et al., the Netherlands, 2011

SGE; 0<u>412-2, 5</u>

Abbott BVS

Expectations

Parity versus current DES early

Superiority versus DES late

ABSORB Global Clinical Program

Building the Evidence

First in Man

Cohort A

• Cohort B

Expanding Experience • ABSORB Extend

• ABSORB BTK

Novel Endpoints • ABSORB II • ABSORB Physiology

Pivotal Trials and Landmark Analysis

- ABSORB RCT
- ABSORB Japan
- ABSORB China

ABSORB Cohort A

Principal Investigators: Patrick Serruys, John Ormiston

- Prospective, open label, single arm study
- 30 patients enrolled at 4 sites
- Device sizes: 3.0 x 12 mm; 3.0 x 18 mm in two patients
- Treatment: single *de novo* lesion
- Follow-up schedule:

ABSORB Cohort A Temporal Changes in Lumen

- Late lumen loss at 6 months mainly due to reduction in scaffold area
- Very late lumen enlargement noted from 6 months to 2 years

Non-invasive CT imaging for early and late follow-up is now feasible

Serruys, PW, PCR, 2010

ABSORB A – 5Y Clinical Results

Hiororobical	6 Months	12 Months	5 Years
Hierarchical	30 Patients	29 Patients*	29 Patients*
Ischemia Driven MACE, %(n)	3.3% (1)*	3.4% (1)**	3.4% (1)**
Cardiac Death, %	0.0%	0.0%	0.0%
MI, %(n)			
Q-Wave MI	0.0%	0.0%	0.0%
Non Q-Wave MI	3.3% (1)*	3.4% (1)**	3.4% (1)**
Ischemia Driven TLR, %			
by PCI	0.0%	0.0%	0.0%
by CABG	0.0%	0.0%	0.0%

• No new MACE events between 6 months and 5 years

No scaffold thrombosis up to 5 years

*consent withdrawn after 6 months; **Non-ID-TLR (DS<42%) w/ post-procedural non-Q MI

ABSORB A – 5Y Clinical Results

Hiororobical	6 Months	12 Months	5 Years
Hierarchical	30 Patients	29 Patients*	29 Patients*
Ischemia Driven MACE, %(n)	3.3% (1)*	3.4% (1)**	3.4% (1)**
Cardiac Death, %	0.0%	0.0%	0.0%
MI, %(n)			
Q-Wave MI	0.0%	0.0%	0.0%
Non Q-Wave MI	3.3% (1)*	3.4% (1)**	3.4% (1)**
Ischemia Driven TLR, %			
by PCI	0.0%	0.0%	0.0%
by CABG	0.0%	0.0%	0.0%

No new MACE events between 6 months and 5 years

No scaffold thrombosis up to 5 years

*consent withdrawn after 6 months; **Non-ID-TLR (DS<42%) w/ post-procedural non-Q MI

Device Optimization Objectives

Cohort A

- More uniform strut distribution
- More even support of arterial wall
- Maintain radial strength for at least 3-4
 months
- Storage at room temperature
- Improved device retention
- Unchanged:
 - Material, coating and backbone
 - Strut thickness
 - Drug release profile
 - Total degradation Time

ABSORB Cohort B

Principal Investigators: John Ormiston, Patrick Serruys

- Prospective, open label, single arm study
- 101 patients enrolled at 12 sites
- Device sizes: 3.0 x 18 mm
- Treatment: up to 2 de novo lesion
- Follow-up schedule:

ABSORB Cohorts A and B: Temporal Changes in Lumen Dimensions

Evolution of LL Cumulative Curves – 6 Months ABSORB BVS vs. XIENCE V (non-matched population)

Evolution of LL Cumulative Curves – 12 Months ABSORB BVS vs. XIENCE V (non-matched population)

Evolution of LL Cumulative Curves – 24 Months ABSORB BVS vs. XIENCE V (non-matched population)

ABSORB BVS is neither approved nor available for sale in the U.S

Return of Vasomotor Function

ABSORB Cohort B1 Clinical Results up to 2 Years

Non-Hierarchical	1 Year	2 Years
	N=45	$N = 44^*$
Cardiac Death %	0	0
Myocardial Infarction % (n)	2.2 (1)	2.3 (1)
Q-wave MI	0	0
Non Q-wave MI	2.2 (1)	2.3 (1)
Ischemia driven TLR %	4.4 (2)	4.5 (2)
CABG	0	0
PCI	4.4 (2)	4.5 (2)
Hierarchical MACE % (n)	6.7 (3)	6.8 (3)

No scaffold thrombosis by ARC or Protocol

*1 patient missed the 2-year visit MACE: Cardiac death, MI, ischemia-driven TLR

ABSORB Cohort B1 Clinical Results up to 2 Years

Non Higrarchical	1 Year	2 Years
Non-Hierarchical	N=45	N = 44*
Cardiac Death %	0	0
Myocardial Infarction % (n)	2.2 (1)	2.3 (1)
Q-wave MI	0	0
Non Q-wave MI	2.2 (1)	2.3 (1)
Ischemia driven TLR %	4.4 (2)	4.5 (2)
CABG	0	0
PCI	4.4 (2)	4.5 (2)
Hierarchical MACE % (n)	6.7 (3)	6.8 (3)

No scaffold thrombosis by ARC or Protocol

*1 patient missed the 2-year visit MACE: Cardiac death, MI, ischemia-driven TLR

ABSORB Cohort **B**

MACE Rate Compared to XIENCE V

0 104 303 759

	0	194	393	758
ABSORB BVS(B1+B2) At Risk	101	96	94	91
XV(3.0 x 18mm subgroup, SPI+SPII+SPIII RCT) At Risk	227	219	204	191

ABSORB Cohort B, (n=101) vs. patients treated with a single 3x 18 mm XIENCE V (SPIRIT First+II+III, n=227)

ABSORB BVS is neither approved nor available for sale in the U.S.

Importance of Accurate Vessel Sizing: ABSORB Cohort B Case Study

Ormiston Circ Interv 2011

Probability of Single Strut Abnormality

Risk of single strut fracture during post-dilatation (3.0 mm device)

ABSORB EXTEND

Principal Investigator: Alexandre Abizaid Co-PI: Antonio Bartorelli; Rob Whitbourn

- Continued Access trial. FPI*: Jan 11, 2010
- No hypothesis-testing, typical PCI endpoints, 1000 patients
- Device Sizes: 2.5, 3.0 mm (diameters); 18, 28 mm (lengths)
- Lesion lengths \leq 28 mm
- Planned overlap allowed
- Two imaging subgroups: OCT (n=50, planned overlap only); MSCT (n=100)
- Follow-up schedule:

ABSORB EXTEND vs Cohort B vs SPIRIT Pooled (SPIRIT I + II + III)*: Protocol MACE K-M curves up to 12 Months

Days After Index Procedure	0	37	194	393
BVS EXTEND at Risk	469	440	260	112
ABSORB Cohort B at Risk	101	99	96	94
SPIRIT Pooled at Risk	482	475	462	435

Note: Due to the interim nature of this analysis, FU data is not available for every subject at every timepoint. *SPIRIT Pooled is defined as those subjects receiving either a 3.0 x 18 mm, 2.5 x 18 mm, or 3.0 x 28 mm XIENCE V stent from the SPIRIT FIRST + SPIRIT II + SPIRIT III trial populations.

ABSORB EXTEND vs Cohort B vs SPIRIT Pooled (SPIRIT I + II + III)*: Protocol MACE K-M curves up to 12 Months

Days After Index Procedure	0	37	194	393
BVS EXTEND at Risk	469	440	260	112
ABSORB Cohort B at Risk	101	99	96	94
SPIRIT Pooled at Risk	482	475	462	435

Note: Due to the interim nature of this analysis, FU data is not available for every subject at every timepoint. *SPIRIT Pooled is defined as those subjects receiving either a 3.0 x 18 mm, 2.5 x 18 mm, or 3.0 x 28 mm XIENCE V stent from the SPIRIT FIRST + SPIRIT II + SPIRIT III trial populations.

ABSORB-RCT

ABSORB III (N~2300)

PI: Objective: Primary Endpoint: Steve Ellis, Dean Kereiakes For US approval of BVS Target Lesion Failure (TLF) at 1 year non-inferiority to XIENCE V/PRIME

ABSORB IV (N~3000)

PI:	Gregg Stone
Co-PI:	Steve Ellis, Dean Kereiakes
Objective:	For label claims
Major Sec. Endpoint:	Landmark analysis on TLF from 1 to 5 years, superiority to XIENCE V/PRIME

ABSORB-U.S. RCT

Some Key Issues Still Under Discussion

- 1) What is the proper definition of peri-procedural MI (drives sample size)?
- 2) How should predilatation strategy be prescribed and if different than usual, when should patient be randomized?
- 3) Given U.S. practice of not usually using QCA for vessel sizing, what strategy/training is needed to assure proper BVS sizing?

ABSORB-U.S. RCT

Some Key Issues Still Under Discussion

- 1) What is the proper definition of peri-procedural MI (drives sample size)?
- 2) How should predilatation strategy be prescribed and if different than usual, when should patient be randomized?
- 3) Given U.S. practice of not usually using QCA for vessel sizing, what strategy/training is needed to assure proper BVS sizing?

To Start Approximately December 2012!