Indian TUXEDO Trial In Medically Treated Diabetics

Upendra Kaul MD, DM, FACC, FSCAI, FAMS, FCSI
Executive Director and Dean
Escorts Heart Institute & Medical Research Center and Fortis Hospitals, New Delhi, INDIA

TCTAP 2012
Disclosure Statement of Financial Interest

Investigator Sponsored Research

Study funded by Boston Scientific Corporation

No other Financial Relations
Taxus Element vs. Xience Prime in a Diabetic population in India

TUXEDO-INDIA
Diabetic patients tend to present with more complexity

WHY?

Smaller vessels
Higher rate of calcified lesions
More multi-vessel disease
In-stent restenosis
Higher incidence of AHA/ACC class “C” lesions
More hypertensive patients
More hyperlipidemia
More CKD
CHOICE OF DES IN A DIABETIC
Paclitaxel Stent seems to work differently in diabetic Patients

TCT 2006 - TC WYRE Registry
12-Month TVR
- Cypher™ Stent: 8.5% (N=247)
- TAXUS Stent: 2.8% (N=289)

TCT 2006 - Kaiser Permanente Registry
12-Month Death, MI, TVR
- Cypher™ Stent: 9.0% (N=272)
- TAXUS Stent: 4.0% (N=227)

AHA 2006 - T-SEARCH/RESEARCH Registry
24-Month TLR
- Cypher™ Stent: 13.2% (N=206)
- TAXUS Stent: 5.3% (N=252)

P-values:
- 12-Month TVR: p=0.004
- 12-Month TVR: p=0.02*
- 24-Month TLR: p=0.004

PSSST# 4011C
What About Randomized Trials
REALITY

Clinical Events at 8 Months

<table>
<thead>
<tr>
<th>Event</th>
<th>CYPHER® (684 patients; 970 lesions)</th>
<th>TAXUS™ (669 patients; 941 lesions)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE (%) (n)</td>
<td>9.2% (63)</td>
<td>10.6% (71)</td>
<td>0.41</td>
</tr>
<tr>
<td>Death (%) (n)</td>
<td>1.8% (12)</td>
<td>1.2% (8)</td>
<td>0.50</td>
</tr>
<tr>
<td>Cardiac Death</td>
<td>1.0% (7)</td>
<td>0.9% (6)</td>
<td>0.99</td>
</tr>
<tr>
<td>MI (all) (%) (n)</td>
<td>4.8% (33)</td>
<td>5.5% (37)</td>
<td>0.62</td>
</tr>
<tr>
<td>Q-Wave</td>
<td>0.15% (1)</td>
<td>0.90% (6)</td>
<td>0.067</td>
</tr>
<tr>
<td>Non Q-Wave</td>
<td>4.7% (32)</td>
<td>4.6% (31)</td>
<td>0.99</td>
</tr>
<tr>
<td>TLR (all) (%) (n)</td>
<td>5.0% (34)</td>
<td>5.4% (36)</td>
<td>0.81</td>
</tr>
<tr>
<td>TVR (non-TL)</td>
<td>1.6% (11)</td>
<td>1.2% (8)</td>
<td>0.65</td>
</tr>
<tr>
<td>TVF (%) (n)</td>
<td>10.4% (71)</td>
<td>11.5% (77)</td>
<td>0.54</td>
</tr>
</tbody>
</table>
REALITY – Diabetic Subgroup Analysis
Moric MC et al. JAMA 2006;295:895-904

No Diabetes

Diabetes

\[\uparrow \text{RR}=30\% \]
\[\text{HR}=0.70 \]
\[(0.49-1.01) \]
\[P=0.06 \]

\[\uparrow \text{RR}=20\% \]
\[\text{HR}=1.20 \]
\[(0.78-1.85) \]
\[P=0.20 \]

Restenosis %

- SES
- PES

Restenosis %

- SES
- PES
ISAR-DIABETES: Randomized Comparison of CYPHER vs TAXUS in Diabetic Patients

Dibra A et al. NEJM 2005;27:260-66

Late Loss

P=0.002

Restenosis

P=0.02

TLR

P=0.13

In-segment

SES PES
N=102 N=103

In-segment

SES PES
N=102 N=103

TLR

SES PES
N=125 N=125
Differential Clinical Responses to Everolimus eluting and Paclitaxel Eluting Coronary Stent in Patients with and without diabetes Mellitus

• The databases of 6780 patients recruited in SPIRIT II, SPIRIT III, SPIRIT IV and COMPARE was analyzed
• 1869 patients (27.6%) had diabetes
• Death, MI and TLR rates up to 24 months were compared in non diabetic and diabetic subsets.

Stone et al, Circulation 2011;124 :893-900
Differential Clinical Responses to everolimus eluting and Paclitaxel Eluting Coronary Stent in Patients with and without diabetes Mellitus

Stone et al, Circulation 2011;124:893-900
Differential Clinical Responses to everolimus eluting and Paclitaxel Eluting Coronary Stent in Patients with and without diabetes Mellitus

Stone et al, Circulation 2011;124:893-900
Differential Clinical Responses to everolimus eluting and Paclitaxel Eluting Coronary Stent in Patients with and without diabetes Mellitus

Stone et al, Circulation 2011;124 :893-900
Results from Randomized studies

- Despite various efforts from randomized studies to compare TAXUS and Limus DES in diabetes mellitus patients, it is difficult to draw any conclusion due to their inconsistent findings.

- No dedicated trial with sufficient power to study the clinical outcomes with Limus vs Paclitaxel stents.
Taxus Element vs. Xience Prime in a Diabetic population in India

TUXEDO-INDIA

Diabetic RCT Study Flow

1,830 Diabetic Mellitus patients undergoing PCI enrolled up to 50 clinical sites in India

- TAXUS Element (N=915)
- Xience Prime (N=915)

- 30-Day f/u
- 180-Day f/u
- 12-Month f/u
- 24-Month f/u
Primary Endpoint – Sample Size

• Statistical Method
 – A one-group Z-test (normal approximation to binomial) will be used to test whether the 12-month TVF for TAXUS Element is less than or equal to a pre-specified performance goal.

• Sample Size Parameters
 – Expected TAXUS Element (test) rate = 8.4%
 – Expected Xience Prime (test) rate = 8.4% based on the XIENCE V (PROMUS) results from the SPIRIT trials
 – Non-inferiority margin (Δ) = 4.0%
 – Test significance level (α) = 0.025 (1-sided)
 – Power (1−β) = approximately 0.80
 – Expected rate of attrition = 10%
 – \textbf{N=1,830 patients}
OBJECTIVE: Compare the safety and performance of the TAXUS Element™ against the Xience Prime™ in medically treated diabetic patients.

DESIGN: A Prospective, Single Blind, Multi-center, Randomized Trial

PRIMARY ENDPOINT: composite efficacy and safety endpoint of target vessel failure (TVF) rate at 12 months post-index procedure:
Stent Comparison TE vs XP

<table>
<thead>
<tr>
<th>Element Stent Series</th>
<th>XIENCE Prime Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent Alloy</td>
<td>Platinum Chromium</td>
</tr>
<tr>
<td>Cobalt Chromium</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Paclitaxel (TAXUS)</td>
</tr>
<tr>
<td>Everolimus</td>
<td></td>
</tr>
<tr>
<td>Polymer / Release Rate</td>
<td>Translute™ Polymer (SIBS) (TAXUS)</td>
</tr>
<tr>
<td>Flourinated Co-Polymer (PROMUS)</td>
<td></td>
</tr>
<tr>
<td>Flourinated Co-Polymer</td>
<td></td>
</tr>
<tr>
<td>Delivery System</td>
<td>• Now catheter technology</td>
</tr>
<tr>
<td>• Bi-Segment™ Inner for greater track and push</td>
<td></td>
</tr>
<tr>
<td>• Balloon material designed for optimal performance</td>
<td></td>
</tr>
<tr>
<td>• Shorter balloon tapers</td>
<td></td>
</tr>
<tr>
<td>• Higher RBP</td>
<td></td>
</tr>
<tr>
<td>• Softer tip flexibility</td>
<td></td>
</tr>
<tr>
<td>• “Significantly” lower deflation times</td>
<td></td>
</tr>
<tr>
<td>Stent Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sizes Available</td>
<td>TAXUS™ Element™ – 53 codes</td>
</tr>
<tr>
<td>PROMUS™ Element™ – 47 codes</td>
<td></td>
</tr>
<tr>
<td>XIENCE Prime—46 codes</td>
<td></td>
</tr>
</tbody>
</table>
Clinical Endpoints
Measured at 30, 180 days, and 1 and 2 years post index procedure:

Primary End Point: TVF rate at 1 year
 Cardiac Death, MI and TVR

Secondary End Points
- Target Vessel Revascularization (TVR) rate
- Target Lesion Revascularization (TLR)
- Composite of cardiac death or target vessel MI
- Composite of all deaths, all MI, all revascularizations
- Major Adverse Cardiac Events (MACE) which is the composite endpoint of cardiac death, all myocardial infarction, and TLR
Clinical Endpoints…..contd

- MI (Q-wave and non–Q-wave) rate
- Cardiac death rate
- Non-cardiac death rate
- All death rate
- Cardiac death or MI rate
- All death or MI rate
- Stent thrombosis rate (definite or probable by Academic Research Consortium [ARC] definitions)
Clinical Inclusion Criteria

• Patients with a diagnosis of diabetes mellitus (Type 1 or Type 2) on drug treatment.

• 1. Two hour plasma glucose >200 mg/dL (11.1 mmol/L) following a 75g oral glucose tolerance test
 2. Random plasma glucose >200 mg/dL in individuals with symptoms of hyperglycemia
 3. A fasting plasma glucose level >126 mg/dL (7.0 mmol/L)
 4. Elevated HbA1c level ≥ 6.5 and currently on treatment
 5. Patients admitted with ACS NSTEMI and Hb A1c> 7% can be included even if not on treatment for diabetes with drugs.

• Patient (or legal guardian) understands the trial requirements and provides written informed consent
Clinical Inclusion Criteria (cont)

- Patient is eligible for PCI
- Patient has symptomatic coronary artery disease or documented silent ischemia.
- Patient is willing to comply with all protocol-required follow-up evaluations.
Angiographic Inclusion Criteria

• Target lesion must be a de novo lesion located in a native coronary artery with reference vessel diameter ≥2.25 mm & ≤4.00 mm, lesion length ≤30 mm by visual estimate
• Up to 3 target lesions can be taken.
• A maximum of 2 lesions in one target vessel.
• Target lesion must be in a major coronary artery or branch with visually estimated stenosis ≥50% & <100% with TIMI flow >1.
Clinical Exclusion Criteria

• Patient has known allergy to the study stent system or protocol-required concomitant medications (e.g., stainless steel, platinum, chromium, nickel, iron, thienopyridines, aspirin, contrast) that cannot be adequately pre-medicated.
• Patient has any other serious medical illness (e.g., cancer, congestive heart failure) that may reduce life expectancy to less than 12 months
• LVEF < 30%
• Serum Creatinine > 2 mgs/dl.
Angiographic Exclusion Criteria

• **Target lesions in located in**
 - Left main including left main ostial location
 - Within 2 mm of the origin of the left anterior descending (LAD) coronary artery or left circumflex (LCX) coronary artery by visual estimate
 - Within a saphenous vein graft or an arterial graft or distal to a diseased arterial or saphenous vein graft. Diseased graft defined as irregularity per angiogram and any visually estimated diameter stenosis > 20%.
 - A bifurcation in which the side branch ≥2.0 mm in diameter AND the ostium of the side branch is > 50% stenosed by visual estimate.
 - A side branch requiring pre-dilatation
 - TIMI flow 0 (total occlusion) prior to guide wire crossing
Post PCI Management

- Medical management of diabetes mellitus according to the American Diabetes Association (ADA) guidelines
 - HbA1c < 7
 - B P treated to target of < 140/90
 - LDL cholesterol < 70 mgs
 - Triglycerides < 150 mgs

Dual Anti platelet therapy for at least 1 year
Total Patients Recruited as of April 24th, 2012
N= 738
Study Overview

- Total number of patients to be enrolled in this study: 1830
- Total number of patients recruited up to 24th-Apr-12: 738
- Total number of patients considered till 05-Mar-12: 500*
 - Visits completed till Discharge visit: 498 patients
 - Visits not completed till Discharge visit: 02 patients
 - Patients continuing the study: 492
 - Visits completed till 30 days: 453 patients
 - Visits completed till 6 months: 60 patients

* 2nd DSMB meeting
Patient Disposition First 500 Patients

- Out of 500 patients, 492 are ongoing the protocol
 - Group A (N=248): 243 (98.0%) patients
 - Group B (N=252): 249 (98.8%) patients

- Eight (1.6%) patients discontinued the study due to
 - Withdrawal of consent (n=3): Group A 2 (0.8%) patients
 - Group B 1 (0.4%) patient
 - Death (n=5): Group A 3 (1.2%) patients
 - Group B 2 (0.8%) patients
Total Patients Analysed

N= 500

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A (N=248)</th>
<th>Group B (N=252)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean ± SD</td>
<td>58.0 ± 9.21</td>
<td>58.9 ± 9.34</td>
<td>0.2933</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>191 (77.0)</td>
<td>186 (73.8)</td>
<td>0.4052</td>
</tr>
<tr>
<td>Number of patients on pharmacological treatment, n (%)</td>
<td>224 (90.3)</td>
<td>226 (89.7)</td>
<td>0.8115</td>
</tr>
<tr>
<td>Total Number of Treated Lesions</td>
<td>319</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Target-lesion location, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left anterior descending, n (%)</td>
<td>156 (62.9)</td>
<td>154 (61.1)</td>
<td>0.2768</td>
</tr>
<tr>
<td>Left circumflex, n (%)</td>
<td>70 (28.2)</td>
<td>86 (34.1)</td>
<td>0.4098</td>
</tr>
<tr>
<td>Right, n (%)</td>
<td>90 (36.3)</td>
<td>98 (38.9)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Ramus Intermediate, n (%)</td>
<td>3 (1.2)</td>
<td>7 (2.8)</td>
<td>0.3438</td>
</tr>
</tbody>
</table>
Total Patients Analysed
N= 500

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A (N=248) n (%)[1]</th>
<th>Group B (N=252) n (%)[1]</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Diabetes Mellitus Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>0</td>
<td>2 (0.8)</td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td>248 (100.0)</td>
<td>250 (99.2)</td>
<td></td>
</tr>
<tr>
<td>Insulin requiring</td>
<td>72 (29.0)</td>
<td>86 (34.1)</td>
<td>0.2205</td>
</tr>
<tr>
<td>Risk Factors for CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family History of CVD</td>
<td>36 (14.5)</td>
<td>27 (10.7)</td>
<td>0.178</td>
</tr>
<tr>
<td>History of Smoking</td>
<td>36 (14.5)</td>
<td>34 (13.5)</td>
<td>0.698</td>
</tr>
<tr>
<td>Hypertension</td>
<td>170 (68.5)</td>
<td>176 (69.8)</td>
<td>0.771</td>
</tr>
<tr>
<td>Dyslipidemia as per site</td>
<td>57 (23.0)</td>
<td>54 (21.4)</td>
<td>0.746</td>
</tr>
<tr>
<td>Dyslipidemia as per NCEP criteria*</td>
<td>180 (72.6)</td>
<td>186 (73.8)</td>
<td>0.7630</td>
</tr>
<tr>
<td>Bleeding Disorder</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

\[1\] Percentages were calculated taking N of corresponding column header group as denominator

*Patients were said to be dyslipidemic if had triglycerides >150; LDL > 130; and HDL <40 in both genders
Anginal status at Randomization
N= 500
Indications

- Objective evidence of ischemia- positive

51% patients had ACS
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A (N=248) n (%)[1]</th>
<th>Group B (N=252) n (%)[1]</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>97 (39.1)</td>
<td>95 (37.7)</td>
<td>0.854</td>
</tr>
<tr>
<td>Silent Ischemia</td>
<td>15 (6.0)</td>
<td>18 (7.1)</td>
<td>0.720</td>
</tr>
<tr>
<td>Percutaneous Coronary Intervention</td>
<td>25 (10.1)</td>
<td>23 (9.1)</td>
<td>0.763</td>
</tr>
<tr>
<td>Coronary Artery Bypass Graft (CABG) surgery</td>
<td>9 (3.6)</td>
<td>8 (3.2)</td>
<td>0.810</td>
</tr>
<tr>
<td>Left Ventricular Ejection Fraction (LVEF) measured</td>
<td>237 (95.6)</td>
<td>243 (96.4)</td>
<td>0.655</td>
</tr>
<tr>
<td>Left Ventricular Ejection Fraction (LVEF) measured, mean ± SD</td>
<td>53.4 ± 12.64</td>
<td>54.9 ± 12.14</td>
<td>0.2082</td>
</tr>
<tr>
<td>Known Left Main Disease (>50% stenosis)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Known Multi-vessel disease (50% stenosis) in 2 or 3 major epicardial coronary vessels</td>
<td>110 (44.4)</td>
<td>130 (51.6)</td>
<td>0.106</td>
</tr>
</tbody>
</table>

[1] Percentages were calculated taking N of corresponding column header group as denominator
Use of Stents \(n=500 \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A (n=248) n(%)</th>
<th>Group B (N=252) n (%)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated Lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>181 (73.0)</td>
<td>174 (69.0)</td>
<td>0.2938</td>
</tr>
<tr>
<td>2</td>
<td>57 (23.0)</td>
<td>61 (24.2)</td>
<td>0.8331</td>
</tr>
<tr>
<td>3</td>
<td>8 (3.2)</td>
<td>16 (6.3)</td>
<td>0.1421</td>
</tr>
<tr>
<td>Implanted Stents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>178 (71.8)</td>
<td>171 (67.9)</td>
<td>0.3272</td>
</tr>
<tr>
<td>2</td>
<td>55 (22.2)</td>
<td>63 (25.0)</td>
<td>0.5272</td>
</tr>
<tr>
<td>3</td>
<td>13 (5.2)</td>
<td>14 (5.6)</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3 (1.2)</td>
<td>0.2486</td>
</tr>
</tbody>
</table>
Use of Stents in 2 Groups
N=500

Mean ± SD number of stents implanted per patient: 1.4 ± 0.64

- Mean ± SD number of stents implanted per patient in Group A: 1.3 ± 0.64

- Mean ± SD number of stents implanted per patient in Group B: 1.4 ± 0.65
Use of Stents in 2 Groups

N = 500

- Stent Diameter, mean ± SD: 2.91 ± 0.35
 - Stent Diameter in Stent A, mean ± SD: 2.93 ± 0.36
 - Stent Diameter in Stent B, mean ± SD: 2.89 ± 0.33

- Stent Length, mean ± SD: 23.75 ± 7.19
 - Stent length in Stent A, mean ± SD: 23.56 ± 7.12
 - Stent length in Stent B, mean ± SD: 23.95 ± 7.28
A dedicated study in medically treated patients with diabetes mellitus comparing Taxus Element with Xience Prime. Insulin requiring diabetics = 32%.

Demographic data of first 500 patients available.

Multi vessel disease with long lesions being included. Av stent length = 23.75 ± 7.19, Av stent diameter 2.91 ± 0.35. Average no of stents used= 1.4±0.64.

ACS in 51% patients.

Primary end point TVF at 1 year.

Recruitment of 1830 patients estimated to be completed by February 2013.
<table>
<thead>
<tr>
<th>Study Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator</td>
</tr>
<tr>
<td>Steering Committee</td>
</tr>
<tr>
<td>Clinical Events Committee</td>
</tr>
<tr>
<td>Data Safety Monitoring Committee</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>