NexGen Polishexperience in ACS

Paweł Buszman MD American Heart of Poland Ustroń, Poland

MerilLifesciencesSymposium Seoul, 2011 TCTAP

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Table 12 Recommendations for revascularization in non-ST-segment elevation acute coronary syndrome

Specification	Classa	Level	Ref.c
An invasive strategy is indicated in patients with: • GRACE score > 140 or at least one high-risk criterion. • recurrent symptoms. • inducible ischaemia at stress test.		A	64, 68–70
An early invasive strategy (<24 h) is indicated in patients with GRACE score > 140 or multiple other highrisk criteria.	1	A	63, 64, 66, 70–72
A late invasive strategy (within 72 h) is indicated in patients with GRACE score < 140 or absence of multiple other high-risk criteria but with recurrent symptoms or stress-inducible ischaemia.		A	59, 66, 68
Patients at very high ischaemic risk (refractory angina, with associated heart failure, arrhythmias or haemodynamic instability) should be considered for emergent coronary angiography (<2 h).	lla	C	_
An invasive strategy should not be performed in patients: • at low overall risk. • at a particular high-risk for invasive diagnosis or intervention.	Ш	A	59, 68

^aClass of recommendation.

Level of evidence.

^cReferences.

Figure I Organization of ST-segment elevation myocardial infarction patient pathway describing pre- and in-hospital management and reperfusion strategies within 12 h of first medical contact.

Polish Cardiac Society Working Group on Cardiovascular Interventions Interventional Cardiology in Poland 2009

PCI in Poland 2000-2008 Total PCI / PClin AMI

Vulnerable plaque

A subset of atherosclerotic plaques particularly prone to physical disruption, producing thrombosis that triggers acute coronary syndromes.

Goals for treatment of vulnerable plaque

- Olmprovement of the blood flow
- Expanding lumen and reducing percent diameter stenosis
- Mechanical stabilization of the plaque
- Elimination of thrombus/prevention of thrombus formation
- **OPromoting healing**
- Decreasing of necrotic core size
- Minimizing neointima formation
- Decreasing inflammatory reaction

Potential consequences of plaque compresion

Fibrous cap rupture

Media fracture

Lipid core compression/disruption

Thrombus disruption

Neointimal formation

Inflammatory reaction

Neovascularization

Potential action:

Less traumatic shape/structure of stents struts

Size of stent cells

Mesh covered stents

Balanced force of the balloon/stent system

(avoid plaque rupture, preserve morphology

of the plaque)

Reduced arterial injury

Antiproliferative agents

Reduce injury
Antinflammatory agents

Characteristics of an ideal stent

- Low profile
- Good flexibility
- Low metal : vessel wallarea
- Sufficient radial strength
- Adequate radio-opacity
- Inhibits restenosis
- Biocompatible

Cobaltchromiumstents

- Radial strength cobalt alloy is about 40-50% stronger
 then stainless steel
- Enhanced visibility
- Allow low profile stents with good flexibility and curveconformity
- Impact on restenosis
- Biocompatibility and safety- cobalt-chromium alloy

Similar strut configuration Different strut thickness Same material

Kastrati et al., Circulation, 2001

Differentstrut configuration Different strut thickness Same material

Optimalstentdeployment Risk of edgedissection

oOptimization of stent deployment during PCI is a key element to obtain most favorable immediate and long-term results'

 Suboptimal or incomplete stent expansion is associated with increased restenosis and target vessel revascularization rate

O High-pressure balloon dilation is still necessary to improve the PCI result

Plaque prolapse

Underexpansion Malapposition

Reference

Edge dissectionin OCTRelation to plaquetype

	Fibrous	Fibrocalcific	Fibroatheroma	TCFA	Total
Proximal edge	14 (31.1%)	15 (33.3%)	13 (28.9%)	3 (6.7%)	45
Distal edge	40 (55.6%)	16 (22.2%)	11 (15–3%)	5 (6.9%)	72
Total	54	31	24	8	117

Gonzalo eta al. International Journal of Cardiology (2010)

Edge dissectionin OCT

Intra-stent dissection	
Intra-stent dissection visible, n (%)	70 (87.5)
Intra-stent dissection flap	
Intra-stent dissection flap visible, n (%)	69 (86.3)
Number intra-stent dissection flaps, median (IQR)	3 (1.25–6)
Number intra-stent dissection flaps per mm, median (IQR)	0.10 (0.05-0.22)
Intra-stent dissection flap average length (µm), mean (SD)	300 (130)
Intra-stent dissection flap maximum length (µm), mean (SD)	450 (220)
Intra-stent dissection cavity	
Intra-stent dissection cavity visible, n (%)	55 (68.8)
Number cavities, median (IQR)	2 (0-4.75)
Number cavities per mm, median (IQR)	0.07 (0-0.16)
Maximum depth cavity (μm), mean (SD)	340 (170)
Edge dissection	
Edge dissection visible, n (%)	20/76 (26.3)
Length edge dissection flap, mean (SD)	744 (439)

Edge dissectionin OCT Stablevs. unstablepatients

Intra-stent dissection			
Intra-stent dissection visible, n (%)	41/45 (91.1)	29/35 (82.9)	0.3
Intra-stent dissection flap			
Intra-stent dissection flap visible, n (%)	39/45 (86.7)	30/35 (85.7)	0.9
Number of intra-stent dissection flaps, median (IQR)	3 (2-7)	3 (1-4)	0.3
Number of intra-stent dissection flaps per mm, median (IQR)	0.12 (0.05-0.25)	0.12 (0.04-0.13	8) 0.3
Intra-stent dissection flap average length (µm), mean (SD)	297 (134)	289 (120)	0.8
Intra-stent dissection flap maximum length (µm), mean (SD)	488 (238)	419 (197)	0.1
Intra-stent dissection cavity			
Intra-stent dissection cavity visible, n (%)	32/45 (71.1)	23/35 (65.7)	0.6
Number cavities, median (IQR)	2 (0-4.5)	1 (0-5)	0.6
Number cavities per mm, median (IQR)	0.07 (0-0.15)	0.04 (0-0.17)	0.8
Maximum depth cavity (μm), mean (SD)	336 (183)	357 (150)	0.6
Edge dissection			
Edge dissection visible, n (%)	9/42 (21.4)	11/34 (32.3)	0.3
Edge dissection length (μm), mean (SD)	860 (579)	650 (277)	0.3

Open cell in mid segment

Close cell at edges

Hybrid design

Balloon – relatedvesselinjuryRelation to neointima growth

Carter et al. CCI 2000:51:112-119

Balloon – relatedvesselinjuryRelation to neointima growth

short transitional edge protection balloon

conventional balloon

Carter et al. CCI 2000:51:112-119

NexGenvs. Driver inporcinecoronaryarteries 28-Day comparison

Prevention of edgedissection Vesselwallsupportatthestentedge

More Cells per Diameter

Impairedendothelialization

Mostcommon location of uncovered stent struts:

- Middlesection
- Stent overlap
- Penetrationinto the necrotic core of plaques
- Malapposition,
- Bifurcations
- Hypersensitivity reactions

Endothelialization of NexGen 7-day SEM

NexGen 3x13. LCx

NexgenPolishexperience American Heart of Poland, 10 cathlabs

- Total 770 NexGenstents
- 535 pts with ACS (201 STEMI, 334 NSTE-ACS)
- 100% procedural success, no in-hospital death
- No cases of stentthrombosisuptp 6 months
- Prospective registry of NexGen in progress

Final angio

 After thrombectomy and stenting: LAO/Caudal liJ29 Kasprzyk – sekwencja 13 Ilona i Janek, 2010-09-19

NexGen

Experiencemainlyinacutecoronarysyndromes

- Gooddeliverability
- No dissections
- No stent thrombosis