
TAVR in Bicuspid Aortic Valve

Raj R. Makkar, MD

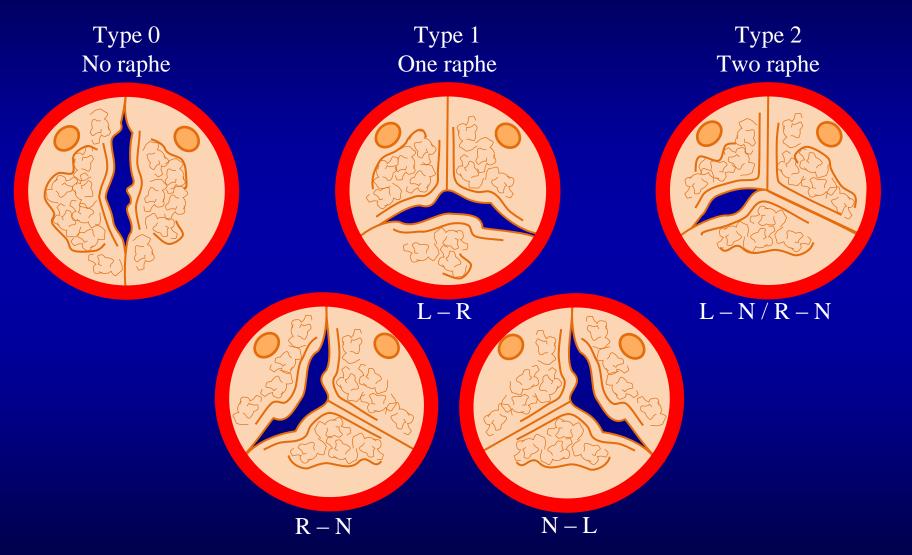
Director, Interventional Cardiology & Cardiac Catheterization Laboratories Associate Director, Cedars-Sinai Heart Institute Professor of Medicine, University of California, Los Angeles Stephen Corday Chair in Interventional Cardiology

Bicuspid Aortic Valve disease and TAVR

1 to 2% incidence, 2 to 4 times more frequent in men

(Tzemos et al. JAMA 2008; 300:1317-25.)

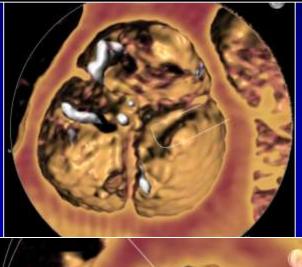
Could be an heritable condition – mutation of gene NOTCH1

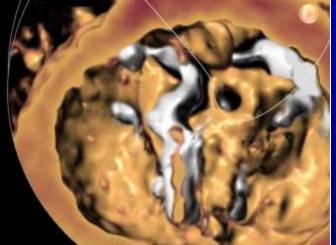

(Garg et al. Nature 2005; 437: 270-4)

High Frequency in patients having sAVR (62% < 70y / 38% > 80y

(Roberts et al. Circulation 2005; 111: 920-5)

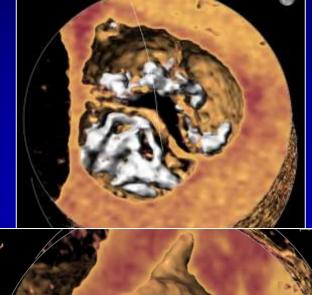
From T. Lefevre; TVT 2015

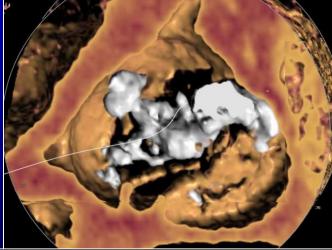

Siever's classification



Sievers et al. J Thorac Cardiovasc Surg 2007;133:1226-33.

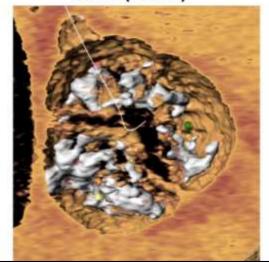
Heterogeneity – need for an alternative classification?

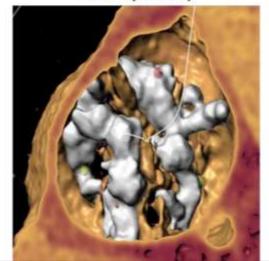

Tricuspid, tricommissural Partial leaflet fusion (not BAV)



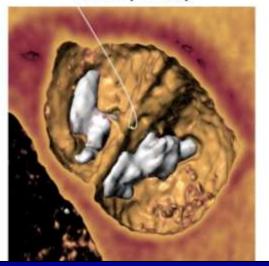
Bicuspid, bicommissural (no raphe)

Bicuspid, tricommissural (functional BAV)

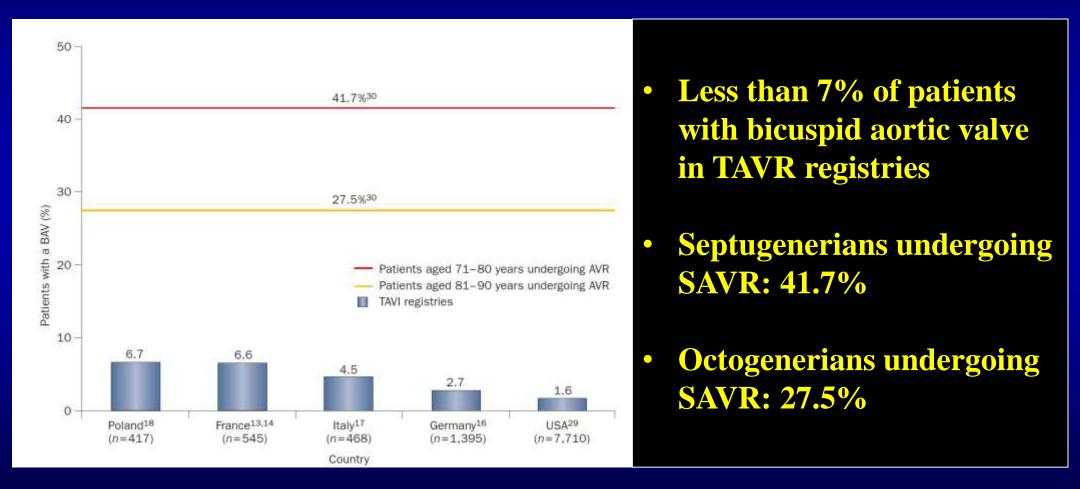



Bicuspid, bicommissural (raphe present)

A simplified anatomical classification for TAVI (describe what you see)


Tricommissural 21/91 (23.3%)

Bicommissural raphe-type 50/91 (55.6%)



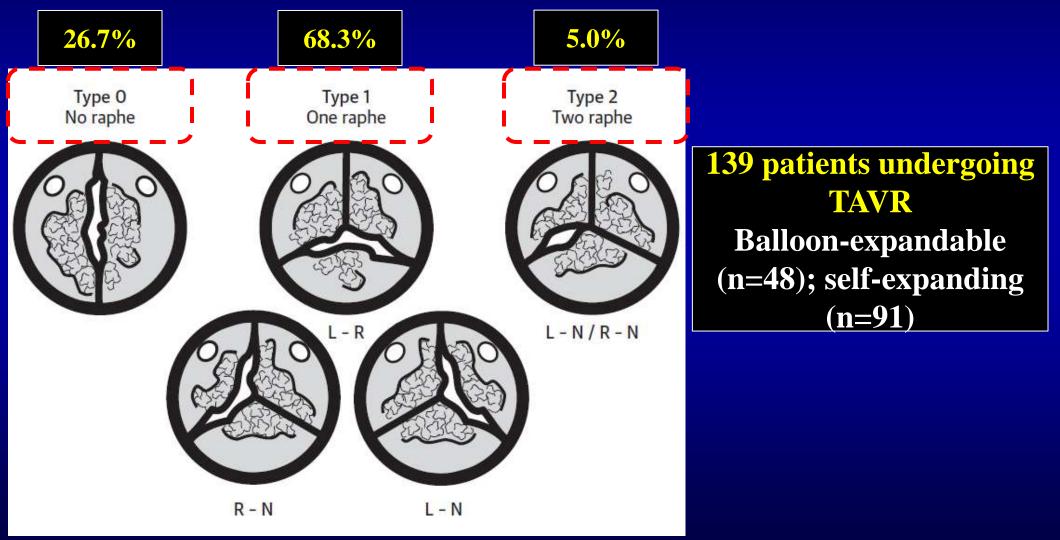
Bicommissural non raphe-type 19/91 (21.1%)

Jilaihawi H. et al. JACC: Cardiovascular Imaging 2016 (in Press)

Prevalence of bicuspid aortic valve in TAVR studies is less than SAVR studies

Zhao ZG. et al. Nature Reviews in Cardiology 2015

Prevalence of bicuspid valve in patients undergoing isolated AVR-almost 50%!


Operatively excised, stenotic aortic valves from 932 patients aged 26 to 91 years

Aortic Valve Structure	Cases, n (%)	Ages (y) of Patients by Decades at Time of Aortic Valve Replacement							
		21-30	31-40	41–50	51-60	61-70	71-80	81-90	91-100
Men									
Unicuspid	34 (6)	3	4	11	8	4	4	0	0
Bicuspid	309 (53)	1	4	20	54	111	94	24	1
Tricuspid	234 (40)	0	0	0	14	50	119	51	0
Uncertain	7 (1)	0	0	0	0	3	2	2	0
Subtotals, n (%)	584 (100)	4 (<1)	8 (1)	31 (5)	76 (13)	168 (29)	219 (38)	77 (13)	1 (<1)
Women									
Unicuspid	12 (3)	1	2	3	1	4	1	0	0
Bicuspid	149 (43)	1	5	10	20	44	55	14	0
Tricuspid	183 (53)	0	0	2	11	43	79	47	1
Uncertain	4 (1)	0	0	1	0	0	3	0	0
Subtotals, n (%)	348 (100)	2 (<1)	7 (2)	16 (5)	32 (9)	91 (26)	138 (46)	61 (18)	1 (<1)

Roberts WC. et al. Circulation 2005

If almost 50% of the patients undergoing surgery are bicuspid (y), for expansion of TAVR it is imperative that these technologies work in bicuspid anatomy

Aortic Annulus and Root Characteristics in Severe Aortic Stenosis due to Bicuspid Aortic Valve and Tricuspid Aortic Valves: Implications for Transcatheter Aortic Valve Therapies	Characteristics	Tricuspid aortic valve N = 200	Bicuspid aortic valve N = 200	<i>P</i> value
	Annulus			
	Area (mm ²)	463 (106)	521 (102)	< 0.00 1
	Diameter max	27 (3.4)	28.3 (3.6)	< 0.001
	Diameter min	21 (2.9)	23 (3.2)	< 0.001
Bicuspid AV vs. tricuspid AV	Δ Diameter	5.3 (2.8)	4.1 (5.4)	0.22
	Ellipticity index	1.29 (0.1)	1.24 (0.1)	0.002
CT characteristics	Circularity	21 (4)	78 (39)	< 0.001
	Eccentric calcification	64 (32)	136 (68)	< 0.001
	Sinus			
Larger annulus	Perimeter	106 (15)	116(18)	< 0.001
8	Diameter, left coronary cusp	30.8 (3.0)		
	Diameter, right coronary cusp	28.6 (3.3)		
• Larger STJ	Diameter, non-coronary cusp	31.2 (3.3)		
Larger 515	Height, left coronary cusp	22 (3.6)	22 (5)	0.8
	Height, right coronary cusp	23 (3.3)	22 (5)	0.8
• I and a condina conta	Height, non-coronary cusp	21.3 (3.1)	24 (6)	< 0.006
 Larger ascending aorta 	Sino-tubular Junction			
	Perimeter	85.5 (12.3)	99.5 (20.3)	< 0.001
	Diameter	27.2 (3.9)	31.9(5.7)	< 0.001
More eccentric calcium	Coronary ostia			
	Height, left coronary artery	14.1 ± 3.2	14.9 ± 5.7	0.14
	Height, right coronary artery	16.4 ± 4.5	16.3 ± 5.3	0.14
Less elliptical annulus	Long axis diameter (mm)	26.9 ± 7	27.4 ± 5	0.76
	Ascending aorta			
	Area (mm ²)	688 (133)	740 (132)	< 0.001
Philip F. et al. CCI 2015	Diameter	29.8 (3.6)	36.9 (8)	< 0.001

Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Disease

TAV size, mm

23 mm

26 mm

29 mm

31 mm

Vascular access Femoral

Subclavian

Apical

Aortic

Carotid

TAV malposition*

≥Grade 2

≥Grade 3

Fluoroscopy duration, min

20 (14-28)

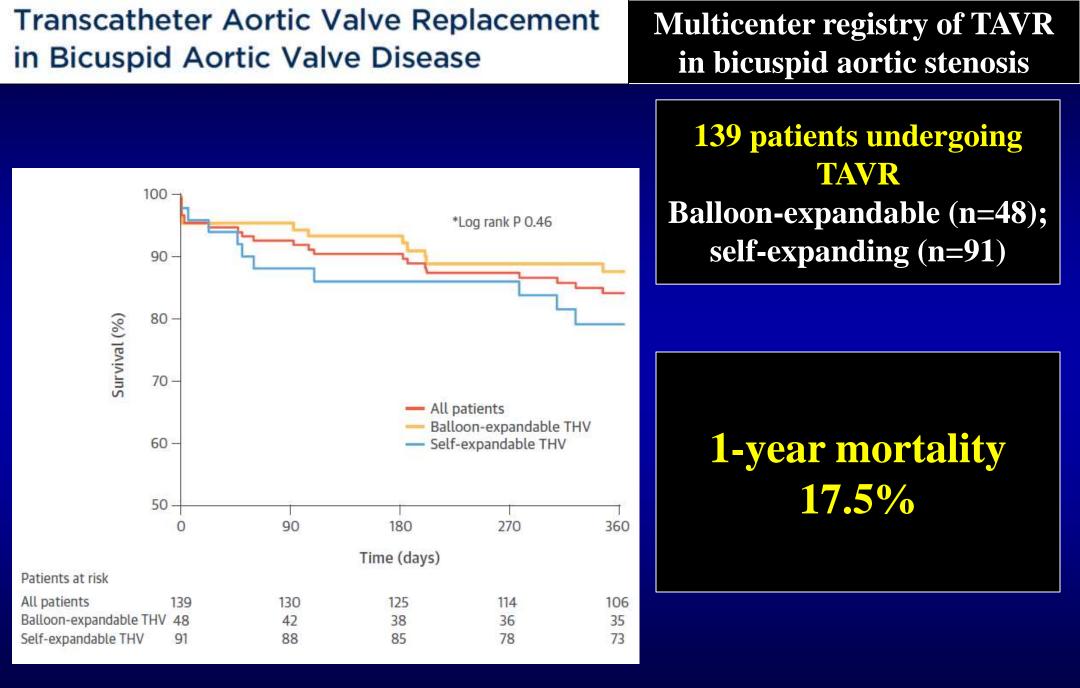
14 (9-25)

20 (15-29)

0.004

Tamponade

Multicenter registry of TAVR in bicuspid aortic stenosis


All Patients Sapien CoreValve Characteristic (n = 139) (n = 48)p Value (n = 91) 27.8 ± 2.2 26.3 ± 2.2 28.5 ± 1.8 0.0002 10 (7.2) 10 (20.8) --50 (36.0) 23 (47.9) 27 (29.7) 0.04 59 (42.4) 44 (48.4) 15 (31.3) 0.07 20 (14.4) 20 (22.0) \sim MSCT cover index, % 13.2 ± 9.1 8.9 ± 5.7 16.3 ± 9.8 < 0.0001 MSCT-based TAV sizing 88 (63.3) 37 (77.1) 51 (56.0) 0.02 109 (78.5) 30 (62.5) 79 (86.8) 0.002 5 (3.6) -5 (5.5) -12 (8.6) 12 (25.0) --12 (8.6) 6 (12.5) 6 (6.6) -1 (1.1) 1 (0.7) --General anesthesia 85 (61.1) 33 (68.8) 52 (57.1) 0.20 Balloon predilation 137 (98.6) 51 (100.0) 89 (97.8) 0.54 0 Predilation balloon size, mm 22.5 ± 2.1 21.9 ± 2.2 22.9 ± 2.0 0.008 Balloon postdilation* 25 (18.1) 5 (10.6) 20 (22.2) 0.11 • Postdilation balloon size, mm* 26.5 ± 2.3 24.7 ± 2.5 26.8 ± 2.1 0.07 9 (6.5) 2 (4.3) 7 (7.8) 0.72 TAV embolization* 3 (2.2) 2 (4.3) 1 (1.1) 0.27 0 Need for 2nd TAV* 5 (3.6) 1(2.1)4(4.4)0.66 5 (5.7) 5 (3.6) 0 0.16 0 Aortic root rupture 1(0.7)1(2.1)-Conversion to SAVR 3 (2.2) 2 (4.2) 1(1.1)0.30 Postimplantation echocardiography Aortic regurgitation, grade (1-4)* 1.1 ± 0.9 1.0 ± 0.9 1.1 ± 0.9 0.53 38 (28.4) 9 (19.6) 29 (32.2) 0.11 8 (6.0) 3 (6.5) 5 (5.5) 0.99 11.3 ± 10.4 Aortic valve gradient, mm Hg* 11.4 ± 9.9 11.7 ± 8.7 0.82 Aortic valve area, cm2* 1.7 ± 0.5 1.6 ± 0.4 1.7 ± 0.5 0.23 Contrast media, ml 174 ± 88 176 ± 118 172 ± 81.5 0.17

139 patients undergoing TAVR Balloon-expandable (n=48); self-expanding (n=91)

Procedural mortality 3.6% Valve embolization 2.2% **Conversion to SAVR 2.2%** > 2+ AR in 28%

Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Disease	Multicenter registry of TAVR in bicuspid aortic stenosis			
CT based sizing is an independent predictor of post-TAVR AR	139 patients undergoing TAVR Balloon-expandable (n=48); self-expanding (n=91)			

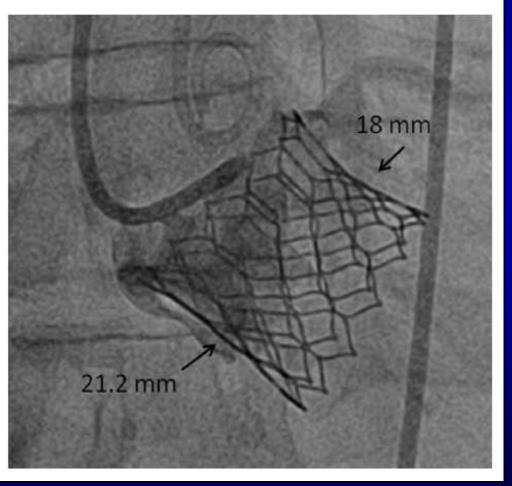
	Univariate Analysis			Multivariate Analysis			
Characteristic	Odds Ratio	95% CI	p Value	Odds Ratio	95% CI	p Value	
Age	0.95	0.96-1.03	0.63				
Males	3.50	1.50- <mark>8.20</mark>	0.004	4.29	1.63-10.79	0.003	
STS PROM	0.85	0.75-1.04	0.05	0.88	0.75-1.04	0.13	
Mean aortic gradient	0.99	0.97-1.02	0.61				
Aortic valve area	3.20	0.34-29.86	0.31				
LV ejection fraction <40%	1.40	0.62-3.14	0.41				
Annulus size	0.93	0.82-1.04	0.20				
TAV size	1.10	0.92-1.31	0.31				
MSCT-based TAV sizing	0.23	0.10-0.51	< 0.0001	0.19	0.08-0.45	<0.0001	
Bicuspid type 1	2.14	0.82-5.56	0.11				
CoreValve	1.93	0.82-4.54	0.13				
Year of procedure	0.78	0.60-1.03	0.08				

Bicuspid Aortic Valve Stenosis

Favorable Early Outcomes With a Next-Generation Transcatheter Heart Valve in a Multicenter Study Multicenter registry of Sapien3 valve in bicuspid aortic stenosis

TABLE 430-Day Clinical Events (N = 51)*	
Mortality	2 (3.9)
Myocardial infarction	0 (0)
Stroke, total events	1 (1.9)
Disabling stroke	0 (0)
Nondisabling stroke	1 (1.9)
Bleeding, total events	14 (27.5)
Life-threatening	2 (3.9)
Major	3 (5.9)
Minor	9 (17.6)
Vascular complications, total events	7 (13.7)
Major	2 (3.9)
Minor	5 (9.8)
Acute kidney injury ≥2	1 (1.9)
New permanent pacemaker†	12 (23.5)
Device 30-day safety endpoint	6 (11.7)

51 patients from 8 medical centers


- **30-day mortality 3.9%**
- Pacemaker 23.5%
- Post-dilation 7.8%
- Conversion to SAVR 0%

Bicuspid Aortic V avorable Early Outcome ranscatheter Heart Valv	Multicenter registry of Sapien3 valve in bicuspid aortic stenosis 51 patients from 8 medical centers			
No cases of mo				
	All Patients	Oversizing >10%	Oversizing <10%	
	(N = 51)	(n = 26)	(n = 25)	p Value
Aortic valve mean gradient, mm Hg	(N = 51) 11.2 ± 4.7	(n = 26) 11.4 ± 5.0	(n = 25) 11.0 ± 4.5	p Value 0.76
Aortic valve mean gradient, mm Hg Aortic valve peak gradient, mm Hg				•
	11.2 ± 4.7	11.4 ± 5.0	11.0 ± 4.5	0.76
Aortic valve peak gradient, mm Hg	$\begin{array}{c} 11.2 \pm 4.7 \\ 22.0 \pm 8.2 \end{array}$	$\begin{array}{c} 11.4 \pm 5.0 \\ 23.3 \pm 8.3 \end{array}$	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \end{array}$	0.76 0.29
Aortic valve peak gradient, mm Hg Aortic valve area, cm ²	$\begin{array}{c} 11.2 \pm 4.7 \\ 22.0 \pm 8.2 \end{array}$	$\begin{array}{c} 11.4 \pm 5.0 \\ 23.3 \pm 8.3 \end{array}$	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \end{array}$	0.76
Aortic valve peak gradient, mm Hg Aortic valve area, cm ² Aortic regurgitation	$\begin{array}{c} 11.2 \pm 4.7 \\ 22.0 \pm 8.2 \\ 1.68 \pm 0.32 \end{array}$	$\begin{array}{c} 11.4 \pm 5.0 \\ 23.3 \pm 8.3 \\ 1.78 \pm 0.33 \end{array}$	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \\ 1.56 \pm 0.27 \end{array}$	0.76 0.29 0.01
Aortic valve peak gradient, mm Hg Aortic valve area, cm ² Aortic regurgitation None/trivial	11.2 ± 4.7 22.0 \pm 8.2 1.68 \pm 0.32 32 (62.8)	11.4 ± 5.0 23.3 ± 8.3 1.78 ± 0.33 19 (73.1)	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \\ 1.56 \pm 0.27 \\ 13 \ (52.0) \end{array}$	0.76 0.29 0.01 0.10
Aortic valve peak gradient, mm Hg Aortic valve area, cm ² Aortic regurgitation None/trivial Mild	11.2 ± 4.7 22.0 ± 8.2 1.68 ± 0.32 $32 (62.8)$ $19 (37.2)$	$\begin{array}{c} 11.4 \pm 5.0 \\ 23.3 \pm 8.3 \\ 1.78 \pm 0.33 \end{array}$	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \\ 1.56 \pm 0.27 \\ 13 \ (52.0) \\ 12 \ (48.0) \end{array}$	0.76 0.29 0.01 0.10 0.10
Aortic valve peak gradient, mm Hg Aortic valve area, cm ² Aortic regurgitation None/trivial Mild Moderate	11.2 ± 4.7 22.0 ± 8.2 1.68 ± 0.32 $32 (62.8)$ $19 (37.2)$ $0 (0)$	$\begin{array}{c} 11.4 \pm 5.0 \\ 23.3 \pm 8.3 \\ 1.78 \pm 0.33 \\ \end{array}$	$\begin{array}{c} 11.0 \pm 4.5 \\ 20.8 \pm 8.3 \\ 1.56 \pm 0.27 \\ 13 \ (52.0) \\ 12 \ (48.0) \\ 0 \ (0) \end{array}$	0.76 0.29 0.01 0.10 0.10 1.0

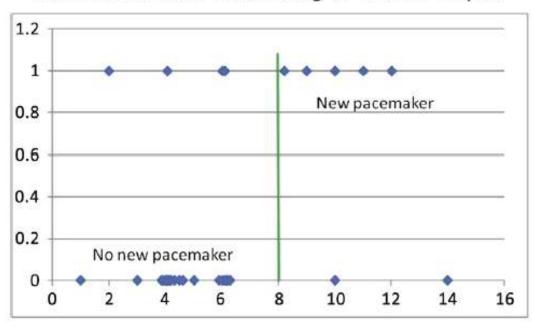
Bicuspid Aortic Valve Stenosis

Favorable Early Outcomes With a Next-Generation Transcatheter Heart Valve in a Multicenter Study Multicenter registry of Sapien3 valve in bicuspid aortic stenosis

FIGURE 2 Asymmetric Valve Expansion

51 patients from 8 medical centers

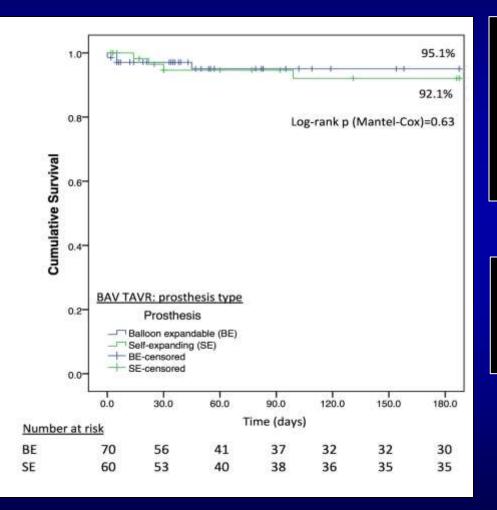
Asymmetric frame expansion noted in 38% of the patients No correlation between asymmetric


expansion and pacemaker/AR rates

Favorable Early Outcomes With a Next-Generation Transcatheter Heart Valve in a Multicenter Study Multicenter registry of Sapien3 valve in bicuspid aortic stenosis

51 patients from 8 medical centers

FIGURE 3 Valve Frame Implantation Depth in Relation to the Need for a New Pacemaker

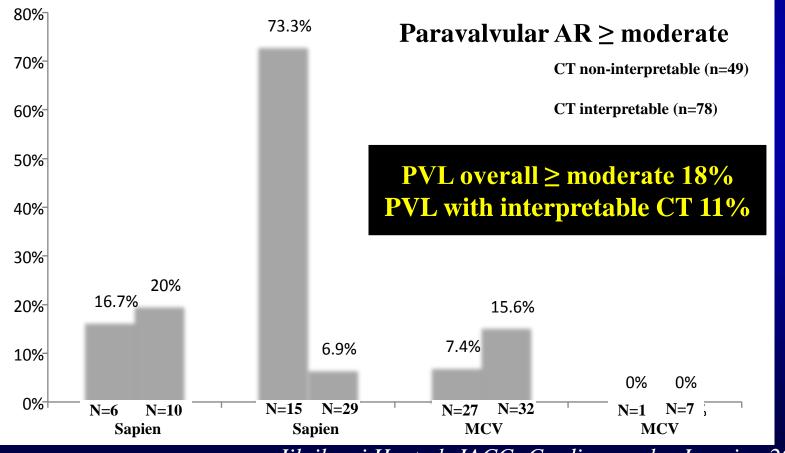


New Pacemaker According to Frame Depth

Depth frame extends below annulus (mm)

Pacemaker rates high (23.5%) and related to the depth of implantation

Multicenter registry of TAVR in bicuspid aortic stenosis


130 patients undergoing TAVR in 14 medical centers Balloon-expandable (n=70); selfexpanding (n=60)

30-day mortality 3.8%

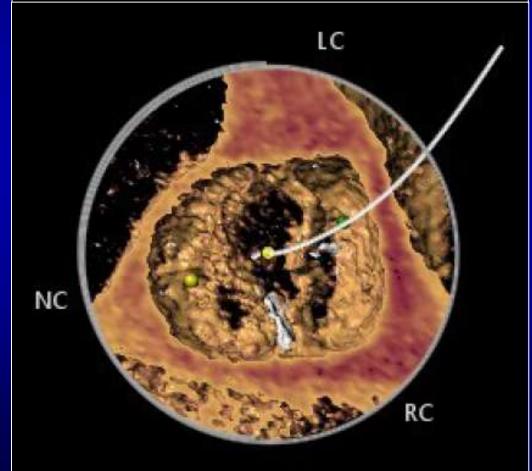
Jilaihawi H. et al. JACC: Cardiovascular Imaging 2016 (In press)

Lack of interpretable baseline CT for annular measurement predicts PVL in bicuspid aortic stenosis

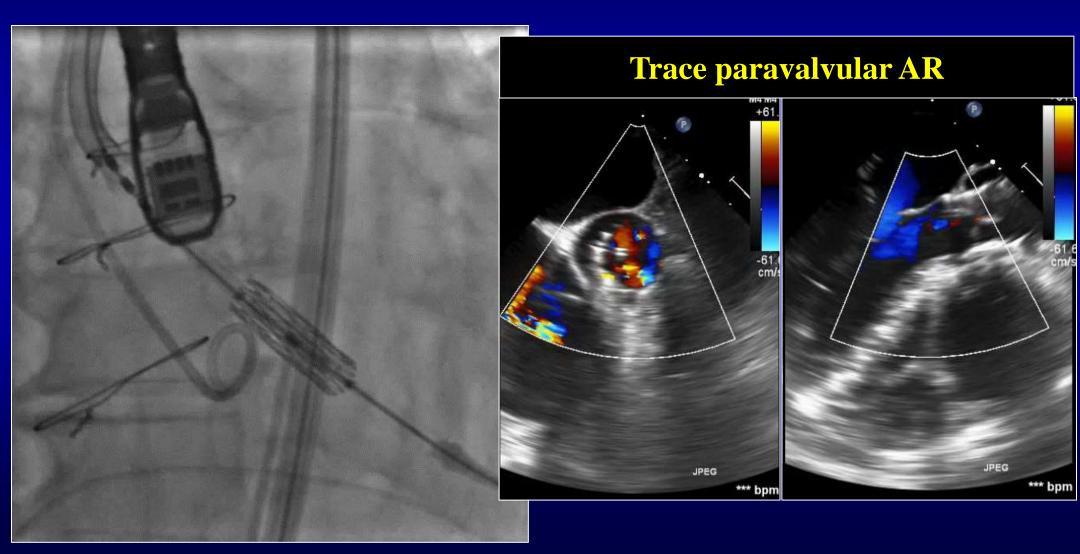
130 patients undergoing TAVR in 14 medical centers Balloon-expandable (n=70); self-expanding (n=60)

Jilaihawi H. et al. JACC: Cardiovascular Imaging 2016 (In press)

Reported series of bicuspid aortic stenosis treated with TAVR

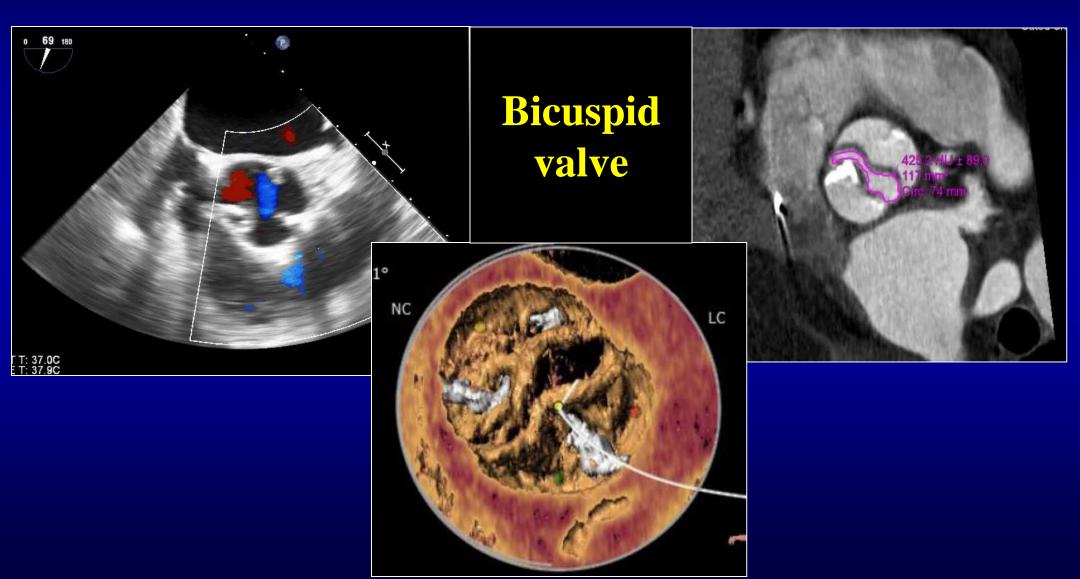

Study/First Author (Year)	n	Multicenter	Balloon/Self-Expandable, %	30-Day Mortality, %	Device Success, %*	AR > Mild, % N	ew Pacemaker, %
Current (2016)	51	Yes	100/0	3.9	98	0	23.5
Mylotte et al. (2014)	139	Yes	35/65	5	89.9	28.4	23.2
Yousef et al. (2015)	108	Yes	56/44	8.3	85.2	30.8	19.4
Bauer et al. (2014)	38	Yes	32/68	11	NR	25	17
Kochman et al. (2014)	28	Yes	18/82	4	93	32	29
Hayashida et al. (2013)	21	No	52/48	4.8	100	19	14.3
Himbert et al. (2012)	15	No	0/100	7	NR	13	40
Wijesinghe et al. (2010)	11	Yes	100/0	18	NR	27	NR

The "easy case": Little calcium, No Raphe

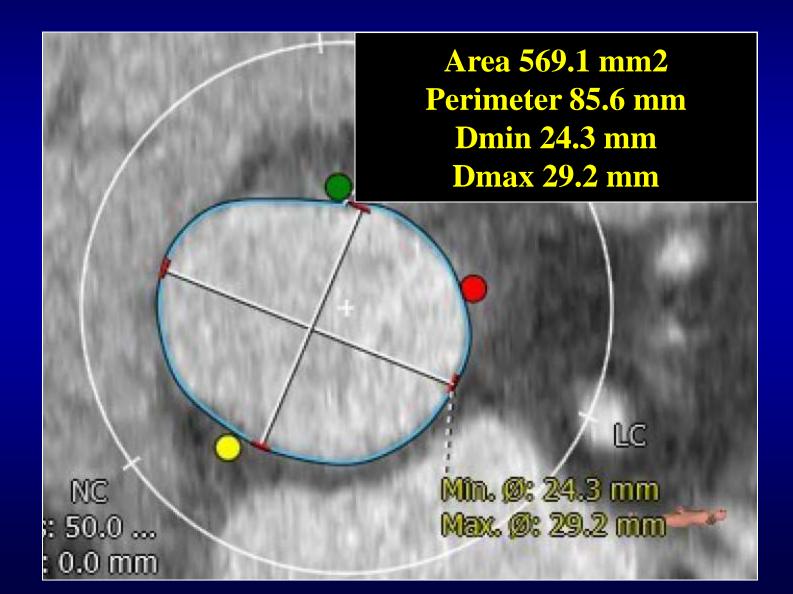

60 y/o female undergoing TAVR

Annulus Area 356.2 mm² Dmin 18.3, Dmax 24.8 mm

Area derived Ø: 21.3 mm RC Perimeter derived Ø: 21.8 mm Area: 356.2 mm² Perimeter: 68.4 mm LC NC Compass: 50.0 mm Distance: 0.0 mm **Congenital bicuspid aortic valve** Minimal calcification

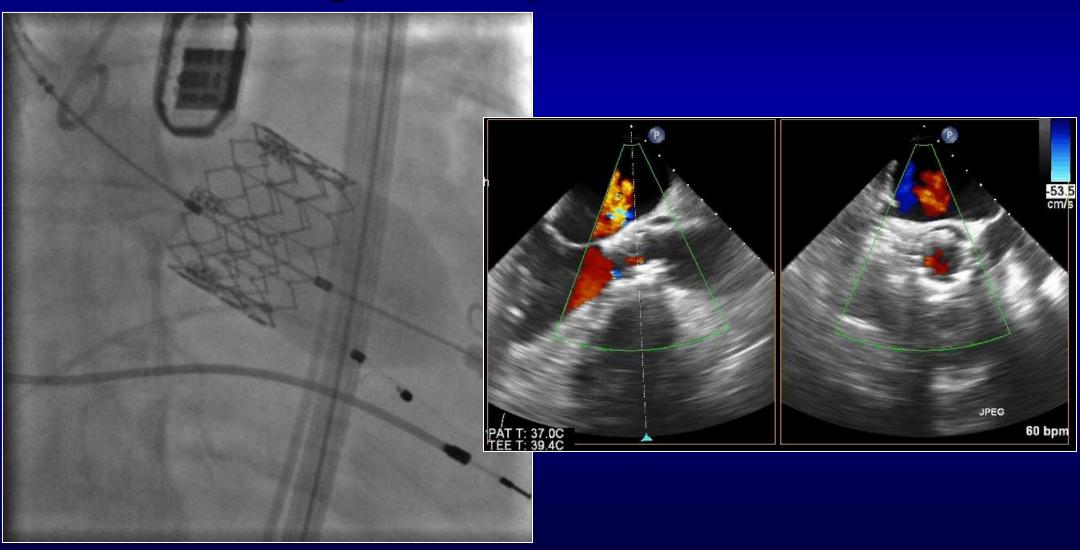


TAVR with 23mm Sapien3 performed

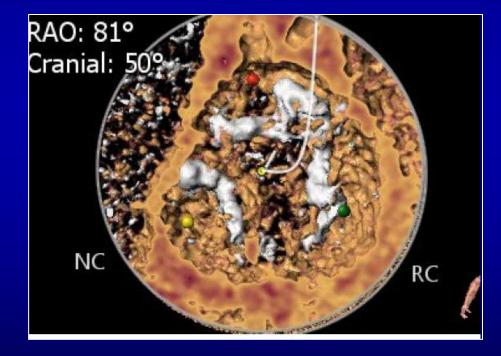


The "ok case": Little calcium, Moderate Calcified Raphe

90 y/o male with severe AS referred for TAVR Extreme risk due to age, frailty and comorbidities

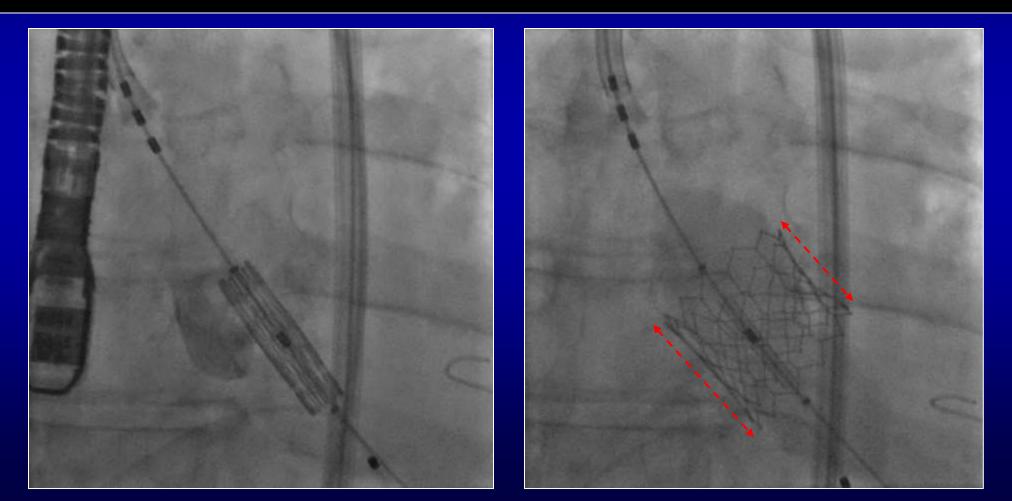

Plan for 29-mm Sapien-XT valve

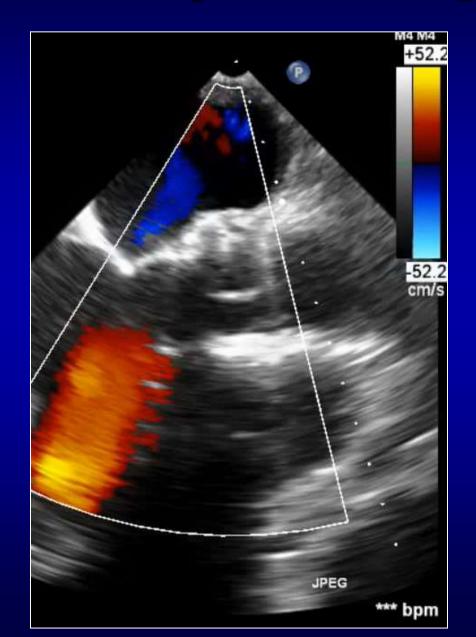
Careful coaxial valve positioning



s/p successful transfemoral TAVR with 29-mm Sapien-XT valve No significant paravalvular AR

60 y/o male with bicuspid valve undergoing TAVR

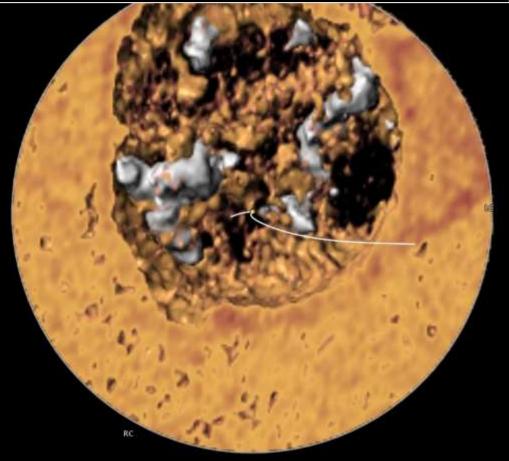

Bicuspid valve with fused left and right coronary cusps



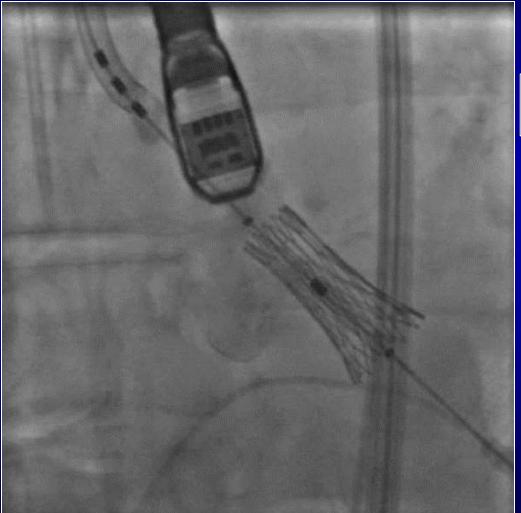
29mm Sapien3 valve deployed

Asymmetric stent expansion during TAVR

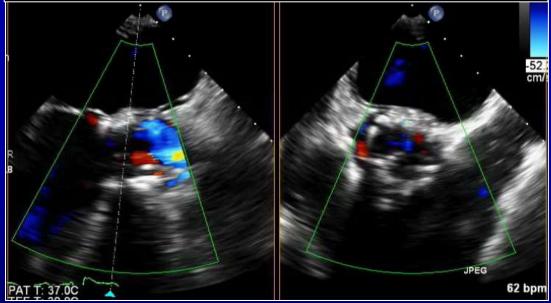
Despite asymmetric expansion, no significant PVL



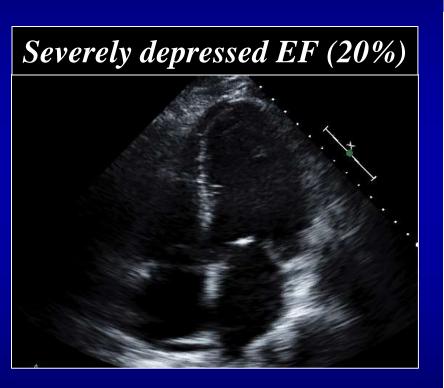
The "interesting case": Moderate calcium, no raphe, very large annulus (840)

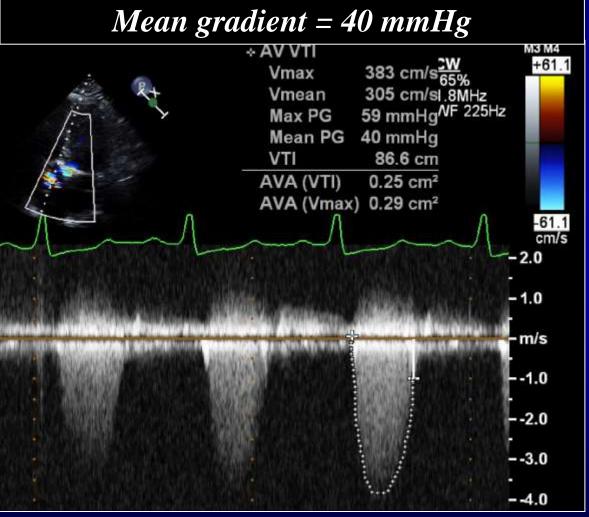

65 y/o male undergoing TAVR

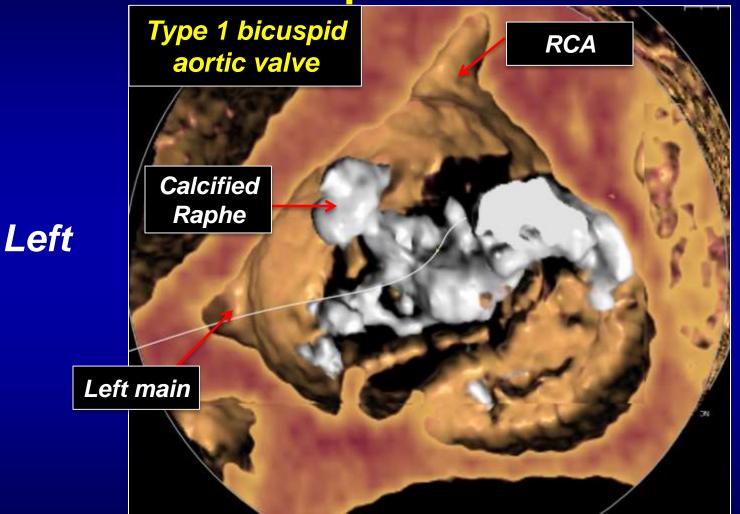
Annulus Area 841.4 mm² Dmin 31.7, Dmax 34.1 mm Area derived Ø: 32.7 mm Perimeter derived Ø: 32.9 mm Area: 841.4 mm² Perimeter:/103.4 mm LC Min. Ø: 31.7 mm. Compass: 50.0 Distance: 0.0 mm Max. Ø: 34.1 mm


Bicuspid aortic valve Fused left and right coronary cusps

TAVR with 29mm Sapien3 (+5cc)




Trace paravalvular AR


Difficult Anatomy: heavy calcium with calcified raphe

55 y/o male with severe AS, referred for TAVR Patient turned down for OHT/VAD or SAVR/CABG

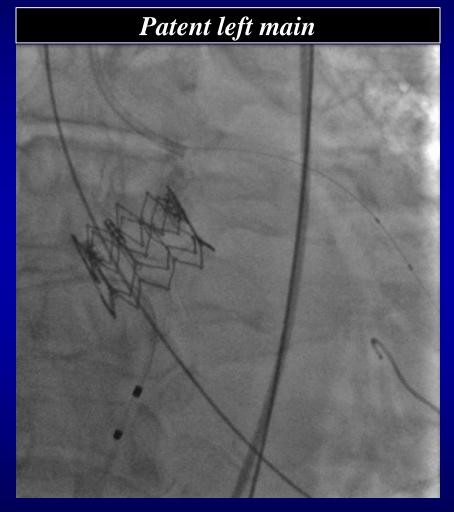
Cardiac CT for aortic valve evaluation Bicuspid aortic valve

Right

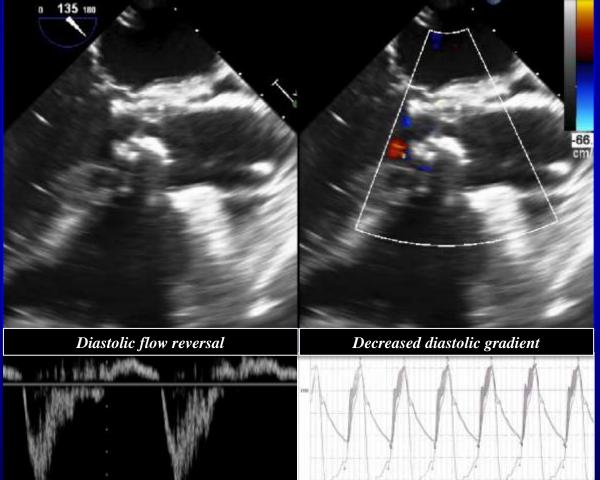
TF TAVR – Preparation and valve deployment

Valvuloplasty with Z-MED 16 mm balloon

Valve deployment

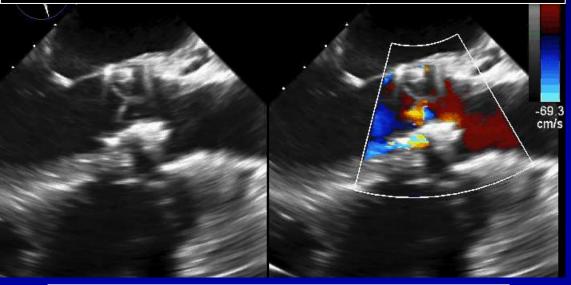


No contrast in the balloon...

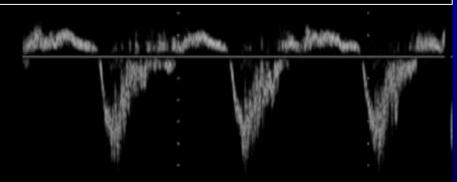

Left main protection and secured venous access with stiff wire

Assessment immediately post valve deployment

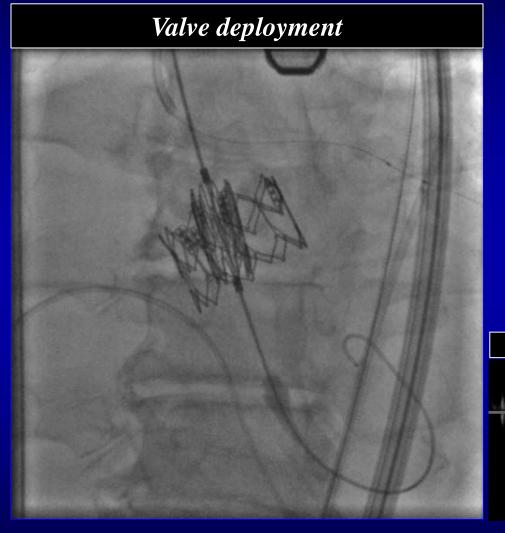
Significant PVL after Valve deployment



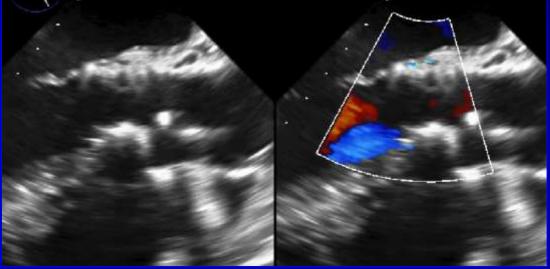
Paravalvular closure with 8 mm AVP II

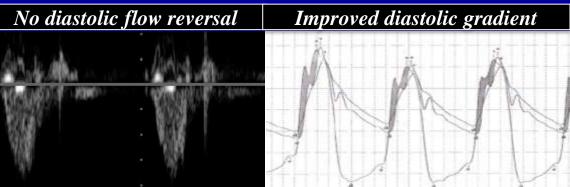

AVP II positioning

Persistent PVL after AVP plug positioning

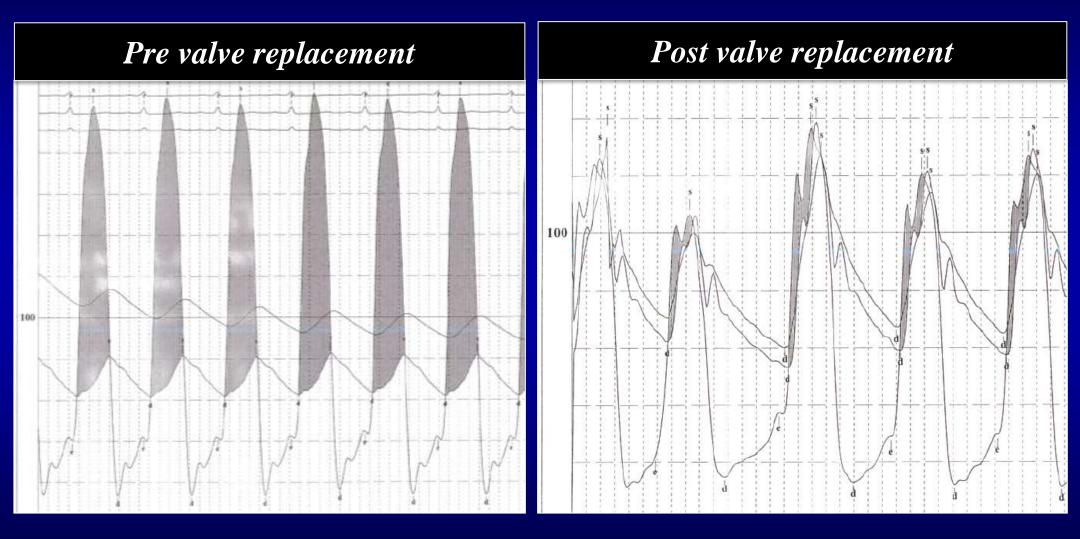


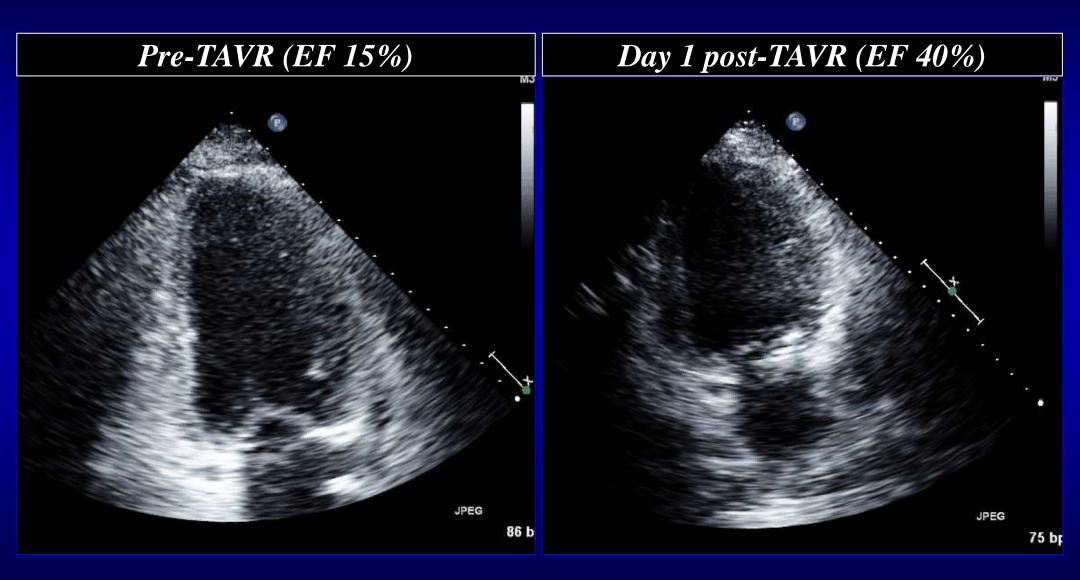
Persistent diastolic flow reversal





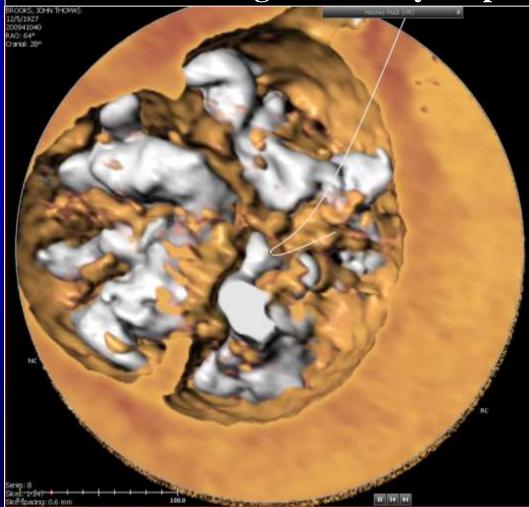
Valve-in valve with Sapien XT 26 mm


Mild residual PVL



Hemodynamics improvement post TAVR

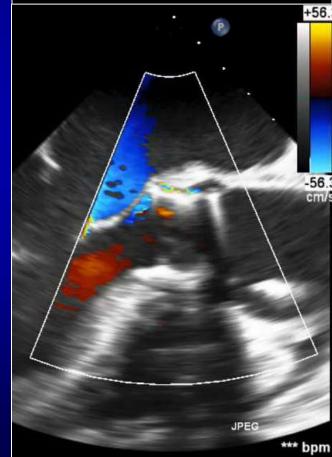
Continuous improvement of LV systolic function post TAVR

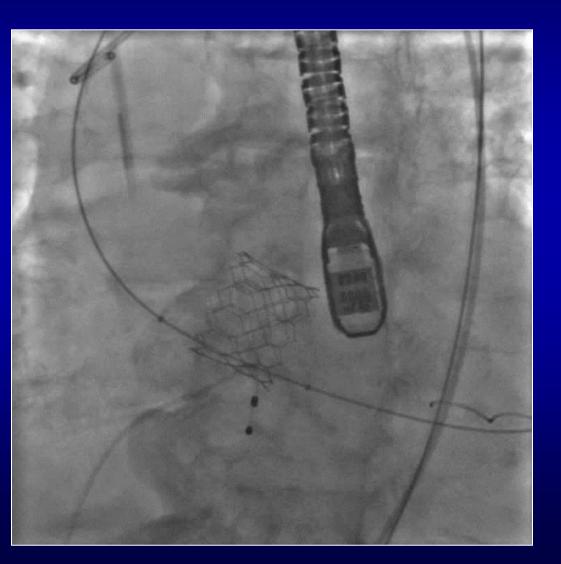

88 y/o male undergoing TAVR

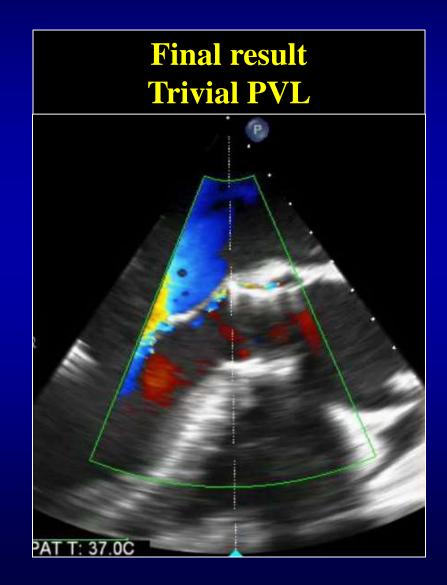
LC

Annulus Area 547.9 mm² Dmin 24.0, Dmax 29.2 mm

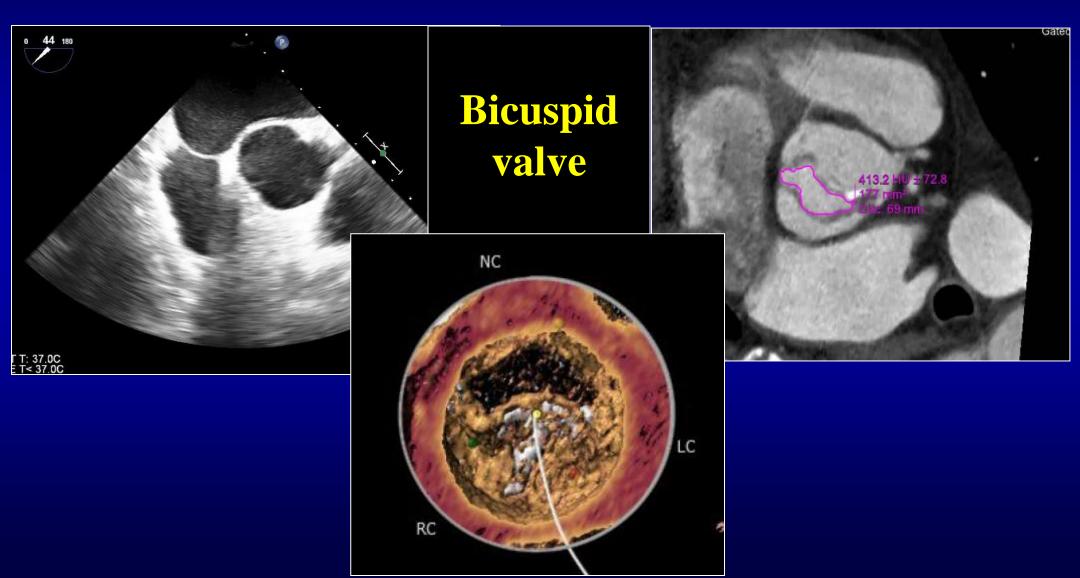
Area derived Ø: 26.4-mm Perimeter derived Ø: 26.6 mm Area: 547.9 mm² Perimeter: 83.7 mm


Compaŝś: 50.0 ... Min. Ø: 24.0 mm Distance: 0.0 mm ----- Max. Ø: 29.2 mm **Bicuspid raphe type, heavily calcified** Fused left and right coronary cusps

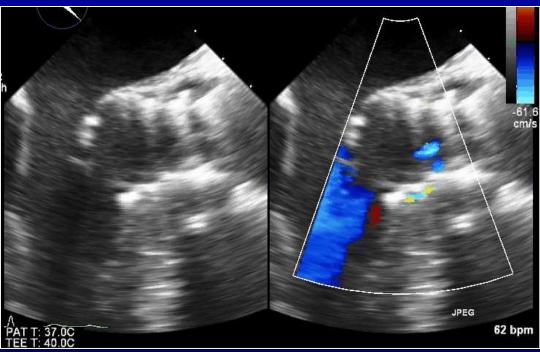

TAVR with 26mm Sapien3



Moderate PVL after valve deployment



Post-dilation performed with a Z-Med II 26 x 4 cm Balloon



78 y/o male with severe AS referred for TAVR High risk due to morbid obesity

s/p successful transfemoral TAVR with 31-mm Medtronic CoreValve Mild residual paravalvular AR

Practical considerations..

- Be careful of unfavorable anatomical features on CT: excessive calcium, raphe type especially calcified raphe
- Positioning is harder than the tricuspid valve. Cross check with echo. TEE guidance is is preferable due to higher rates of AI and risk of aortic root rupture
- Predilation is generally a good idea; avoids difficult crossing and stresses on aorta which may be diseased; also can help with sizing.
- Post dilation and rarely valve in vavle may be needed to optimize the expansion and procedural outcomes.

Conclusions

- Despite "exclusion" of Bicuspidy in clinical trials TAVR is currently being performed in real life setting with reasonably good outcomes. Its incidence depends on use of CT; (104 cases out of 1850+TAVRs at Cedars-Sinai)
- Though the mortality may be "similar" to the tricuspid TAVR, the acute outcomes in the published literature are worse with respect to AI, and pacemaker implantation with the first generation devices
- The data with Sapien 3 valve are impressive, no comparative studies are available with other next generation valves (Evolut R, Lotus, Portico)
- While Bicuspid TAVR is justifiable in higher surgical risk patients, high risk anatomical features (extreme calcium, heavy-calcified raphe), concomitant aortopathy should prompt consideration for surgical AVR in low risk patients
- Randomized trials/prospective registries especially in patients with lower surgical risk are needed.