Growing Evidence to Support Aggressive CTO-PCI

J. Aaron Grantham, MD, FACC Associate Professor of Medicine University of Missouri Kansas City

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- Boston Scientific, Asahi Intecc, Vascular Solutions
- Boston Scientific, Abbott Vascular, Asahi Intecc
- None
- None
- US patent#14/575,977
- None

Benefits of CV Care

Quality of Life

Quantity of Life

Outline

- CTOs are common
- Treatment varies
- Barriers to PCI
 - Myths
 - Can't get worse
 - Well collateralized
 - Too Risky/too difficult
 - New data

CTOs are common

7559 Patients with Coronary Angiography April 2008-July 2009 at 3 centers in Canada

74% had CCS class II or more angina

Fefer et al J Am Coll Cardiol 2012;59:991–7

CTOs are common

- CCS estimates 1,000,000 Americans with Refractory angina McGillion et al. Can J Cardiol 2012;28:S20-41
- A persistent, painful condition characterized by the presence of angina caused by coronary insufficiency in the presence of coronary artery disease which cannot be controlled by a combination of medical therapy, angioplasty, and

Reason for no revascularization ^a	Number	% (n = 33)
Chronic total occlusion	23	69.7%
Diffuse disease	15	45.5%
Collateral dependent perfusion	14	42.2%
Comorbidities	4	12.1%
Multiple restenoses	2	6.1%
Poor distal targets	1	3.0%

Williams et al. Catheter and Cardiovsc Int 2010

CTO Treatment Varies: Operator Bias

>34,000 patients in NCDR with CTO, 13.7% attempted

	Point Estimate	95% CI
No Diabetes	1.25	1.17-1.34
No Prior AMI	1.48	1.38-1.59
Creatinine < 2.0	1.93	1.57-2.38
Stress Test Positive vs Negativ	re 1.18	1.07-1.31
Angina vs asymptomatic	1.78	1.63-1.96
LVEF > 40%	1.26	1.15-1.38
SVD vs MVD	3.07	2.87-3.28
Low vs Intermediate Operator	0.59	0.54-0.65
Low vs High Volume Operator	0.50	0.46-0.55

 Likelihood of attempted PCI independently associated with operator volume

Grantham, JA et al JACC: Cl 2009; 2:479-486

CTO Treatment Varies: Institutional Bias

Overall 10% of patients with a CTO were treated with PCI

Fefer et al. JACC 2012

Underuse of Revascularization

Adjusted hazard for death or ACS with revasc vs medical therapy among "A" group (0.61; 95% confidence interval [CI]: 0.42 to 0.88) Ko et al JACC 2012;60:1876-84

Variability can represent underuse

Interventional risk treatment paradox

Baseline SYNTAX score	7.5 ± 5.6	9.3 ± 6.1	12.6 ± 6.9	21.7 ± 8.6	<.001
Residual SYNTAX score	0	1.5 ± 0.5	5.2 ± 1.6	15.8 ± 6.5	<.001
Delta† SYNTAX score	7.3 ± 5.4	7.5 ± 6.1	6.9 ± 6.3	5.7 ± 6.4	.15

Untreated lesions

	rSS >0-2 (n = 523)	rSS >2-8 (n = 578)	rSS >8 (n = 501)	p Value All Groups
Severe calcification	0 (0%)	10 (1.7%)	59 (11.8%)	<0.001
Chronic total occlusion	1 (0.2%)	58 (10.0%)	216 (43.1%)	<0.001
Bifurcation/trifurcation	0 (0%)	179 (30.9%)	287 (57.3%)	<0.001
Aorto-ostial lesion	1 (0.2%)	4 (0.7%)	14 (0.3%)	<0.001
Lesion length >20 mm	3 (0.6%)	143 (24.7%)	351 (70.1%)	<0.001
Small vessel/diffuse disease*	409 (78.2%)	303 (52.4%)	264 (52.7%)	<0.001

Généreux et al J Am Coll Cardiol 2012;59:2165-74

CTO Mythbusters

- "Can't get any worse"
- "Well collateralized"
- "Too risky"

Top 3 Myths: Can't any worse

and the second second second second	PCI suce	cess	PCI fa	ilure		Odds Ratio	outs Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	A-H, Randon, 95% Cl
Angioi et al.	3	93	9	108	3.4%	0.37 [0.10, 1.40]	
Aziz et al	9	377	12	166	6.7%	0.31 [0.13, 0.76]	
Drozd et al.	7	280	5	149	4.3%	0.74 [0.23, 2.37]	
Finci et al.	5	100	3	100	2.9%	1.70 [0.40, 7.32]	
Hoye et al.	37	567	36	304	14.4%	0.52 [0.32, 0.84]	
wanhoe et al.	3	317	7	163	3.2%	0.21 (0.05, 0.83)	
Labriolle et al.	7	127	2	45	2.4%	1.25 [0.25, 6.27]	
Noguchi et al.	7	134	15	92	6.1%	0.28 [0.11, 0.72]	
Olivari et al.	2	286	3	83	1.9%	0.19 [0.03, 1.14]	
Prasad et al.	229	914	101	348	21.6%	0.82 (0.62, 1.08)	-+
Suero et al.	395	1491	180	514	23.8%	0.67 [0.54, 0.83]	+
Valenti et al.	17	344	17	142	9.3%	0.38 [0.19, 0.77]	
Warren et al.	0	26	0	18		Not estimable	
Total (95% CI)		5056		2232	100.0%	0.56 [0.43, 0.72]	•
Total events	721		390			0. 0.150993779320023203252	0000
Heterogeneity Tau*	= 0.06; Ch	*= 18.	74. df = 1	1 (P=	.07); *=	41%	
Test for overall effect	t Z = 4.39	P < .0	001)	0.10	0.22.084//-	0.01	0.1 1 10 100
0.000 CC COURSESS	0.1010.0405600	1	0.51001				Favors Success Favors Failure

Joyal D, Afilalo J, Rinfret S. Am Heart J, 2010

Can't get any worse

% Ischemic Burden

Hachamovitch et al Circulation. 2003; 107:2900-2907

Can't Get Any Worse: Double Jeopardy

Van der Schaff RJ et al. Am J Cardiol 2006

Well Collateralized

FFR in 59 pts after successful wire crossing of a CTO

Werner GS et al, European Heart Journal 2006

Myocyte Doesn't Care

Propensity matched noninferiority comparison of CTO-PCI to nonCTO-PCI in the 10 center PRISM-OPS registry

TABLE III.	Health Status Assessments at Baseline and 6	
months after	er PCI-Overall Cohort	

Health status measure	e	$\begin{array}{c} \text{CTO} \\ n = 167 \end{array}$	Non-CTO n = 2,521	P-value
SAQ physical	Baseline	73.0 ± 25.9	77.4 ± 24.0	0.039
limitation score	6 month ^a	95.7 ± 13.3	96.2 ± 12.2	0.67
SAQ angina	Baseline	69.6 ± 27.6	72.6 ± 23.9	0.12
frequency score	6 month ^a	91.3 ± 18.3	93.4 ± 15.1	0.17
SAQ quality of	Baseline	53.2 ± 26.0	56.5 ± 25.8	0.11
life score	6 month ^a	80.3 ± 20.9	80.6 ± 20.0	0.875
Rose dyspnea score	Baseline	1.9 ± 1.5	1.7 ± 1.5	0.16
	6 month ^a	1.0 ± 1.3	0.9 ± 1.3	0.31
EQ5D visual	Baseline	66.4 ± 22.1	70.8 ± 19.5	0.005
analog scale	6 month ^a	71.9 ± 18.8	75.3 ± 17.7	0.026

Safley, Grantham et al, ePub ahead of print CCI DOI: 10.1002/ccd.25303, 2013

QoL after CTO-PCI

125 pts completed the Seattle Angina Questionnaire (SAQ) before and one month after PCI. 69 procedural success (55%), 56 failures (45%)

Grantham JA. et al, Circulation: QCOR 2010;3:284-90

CTO-PCI is too risky

A weighted meta-analysis from 18,061 patients in 65 CTO PCI studies

Patel, JACC: Cardiovasc Int, 2013

Appropriateness of CTO-PCI

	Single	vessel	No	med Rx		Single v	vessei	O Max	Med Rx
	-		Angina					Angina	
		Class 0	Class I/II	Class III/IV			Class 0	Class I/II	Class III/IV
VCIV	High Risk No Rx	I	U	U	Risk	High Risk Max Rx	U	A	A
	Int Risk No Rx	I	U	U		Int Risk Max Rx	U	U	A
	Low Risk No Rx	I	I	I		Low Risk Max Rx	U	U	A

Modified from Patel et al J Am Coll Cardiol 2009;53:530-553

Indications for CTO-PCI

Chronic Total Occlusions

PCI of a CTO in patients with appropriate clinical indications and suitable anatomy is reasonable when performed by operators with <u>appropriate</u> expertise.

The Hybrid Approach to CTO-PCI increasing success and efficiency

- Systematic
- Adoption of four strategies
- Sequence based on probability of success
- Rapid decision making

Brilakis et al J Am Coll Cardiol Intv 2012;5:367-79

CTO-PCI adoption in NA

DÎD Saint Luke's

2011

2012

2013

ile The state in the second second second state in the second second second second second second second second

Contemporary Case Example

- 70 yr old man
- CTO RCA 2011
- EECP- no better
- Carvedilol, Isosorbide, Ranolazine
- CCS 3 angina
- RCA ischemia 12% myocardium

Impenetrable proximal cap

Lossy compression - not intended for diagnosis

Corsair BAM Laser Rotoblator Go around

Septal surfing failed

Lossy compression - not intended for diagnosis

Go around "move the cap"

Knuckle around

Finish with crossboss

Stingray re entry balloon

Stick then swap for Pilot 200

Final result

Lossy compression - not intended for diagnosis

67 minutes 1.2Gy 135 cc contrast

Indications and Appropriateness

Hybrid Approach

Success rate 58%

Success rate 55%

OPEN CTO Results

119 ± 72 min

89%

2.5 \pm 1.9 Gy

265 ± 194 ml

Early Health Status Changes in CTO-PCI

Patient Reported Health Status

Complications in OPEN CTO

Procedural	Frequency	30 Day	Frequency
MACE	4.4%	Death	1.3%
Death	0.9%	Rehospitalization	14.7%
MI	2.6%	Unplanned	12.1%
Emergent surgery	0.6%	Revascularization	2.6%
Stroke	0.0%	Planned	2.6%
Perforation	6.0%	PCI	2.3%
Clinical perforation	3.9%	CABG	0.3%
Bleeding Access	4.0%	Skin change	2.9%

Procedural MACE includes Death, MI, Emergent Surgery, Stroke and Clinical Perforation

Unpublished Data from OPEN CTO

Conclusions

- CTOs are common
- CTO treatment is variable
- Patients with CTOs report significant health status impairment
- Hybrid CTO-PCI
 - High Success
 - Efficiency
 - Significant health status improvement
- Appropriately aggressive CTO-PCI should be the goal
- Ask yourself, "if it was 80% occluded would I do it?"