TCT-AP 2015 Seoul, April 28th, 2015

Do We Need a Dedicated Bifurcation Stent in our Practice or is this a Niche Device?

Eberhard Grube MD, FACC, FSCAI

University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA

Eberhard Grube, MD

Physician Name

Eberhard Grube, MD

<u>Company/Relationship</u>

Medtronic, CoreValve: C, SB, AB, OF Direct Flow: C, SB, AB Mitralign: AB, SB, E Boston Scientific: C, SB, AB Biosensors: E, SB, C, AB Kona: AB, E Abbott Vascular: AB InSeal Medical: AB, E, Valtech: E, SB, Claret: SB Keystone: AB Shockwave: E, AB

Kev

<u>TCT-AP 2015</u>

C – Consulting fees, Honoraria R – Royalty Income SB – Speaker's Bureau

G – *Grant and or Research Support E* – *Equity Interests* S – Salary, AB – Advisory Board I – Intellectual Property Rights 0 – Ownership OF – Other Financial Benefits

Bifurcation Stenting

"Make everything as simple as possible, but not simpler"

When it comes to treating bifurcation lesions.....

Studies support a provisional approach

Results from the Nordic I Trial¹

- Randomised: simple (MB) vs complex (MB+SB) bifurcation stenting
- N=413 (28 Scandinavian sites), SES
- MACE at 6 months: 2.9% vs 3.4% (NS)
- Restenosis at 8 months: 5.3% vs 5.1% (NS)
- No benefit with 2 stent strategy

Studies support a provisional approach

Results from the BBC One Trial¹

- Randomised: simple single stent (with provisional SB stenting) vs complex stenting (2 stents) strategy
- N=500, PES

TCT-AP 2015

- In-hospital MACE: 2.0% vs 8.0%
- Death, MI, TVF at 9 months: 8.0% vs 15.2%
- Fewer adverse events with simple strategy

1. British Bifurcation Coronary Study presented by Dr David Hildick-Smith at TCT 2008.

What approach could be suggested for this lesion?

PRADO

What is the basic anatomy

Complexity :

TCT-AP 2015

- Variation in Ostium Ovality
- Variation in Sidebanch take off angle.
- Variation in Vessel Geometry as per "Murrays Law"
- Variation in Stenosis location (Medina Classification)

It is therefore extremely difficult to design a single device to accommodate this variation, except.....

M.E. Russell et al, EuroIntervention 2009; 5:96-103

...if we had a provisional Device which could:

- 1. Reduce complexity
 - sized to the vessel proximally and distally
 - enable side-branch access
- **2**. Improve safety
 - less metal
 - better apposition

Dedicated Bifurcation Stents

AXXESS Stent

- Do we benefit from a dedicated stent when treating bifurcations?
- Understand the use and mechanism of the selfexpanding dedicated AXXESS stent
 - What they can do, when to use them, and why?
- Master how to use the Axxess stent in complex anatomies
- Use OCT imaging to learn about stent strut behaviour at the carina, both post-procedure and at follow-up compared with "culotte" technique

Biosensors Axxess™ Dedicated Bifurcation Stent

- Conical shape 3 and 3.5 mm diam and 11 & 14 mm length
- Self-expanding nitinol
- Elutes Biolimus A9 from an abluminal resorbable PLA polymer
- Delivers over single wire (no wrap or wire bias issues)
- SB protected
- 7 or 8F guide

Goal: Expand Both Vessels

- Cover the proximal lesion segment
- Cover the ostium of the side branch and distal parent vessel without
- Compromising access to the side branch
- This is accomplished if 2 markers are in 1 branch and 1 is in the other
- Provide a convenient placement marker for additional distal stents

The Rationale

- Atheroma and intimal hyperplasia do not occur at carina
- With many stenting techniques it is the non-endothelialized carinal struts that are associated with thrombus
- Biosensors Axxess stent (dotted black line) pushes atheroma away from flow divider and leaves no drug-eluting struts near the carina

Flow divider

Flow divider

TCT-AP 2015

Ormiston modified from Virmani

Axxess[™] Clinical Program

DIVERGE Trial Design

Prospective, single-arm, multi-center trial Any bifurcation with: significant SB's ≥ 2.25 mm; PV-SB angulation < 70° PI: S. Verheye

302 patients 14 clinical sites Europe, Australia and NZ

9-month Restenosis

VERY LOW RESTENOSIS RATE IN BIFURCATION LESIONS

TCT-AP 2015

¹ Verheye S. et al., J Am Coll Cardiol, 2009 ² Verheye S. et al., oral presentation, TCT 2009

5-year Clinical Outcomes

Primary endpoint, its components, and cardiac events

TCT-AP 2015

Verheye S., oral abstract presentation, EuroPCR 2013

Stent Thrombosis up to 5 Years

N = 302	ARC*		
	DEFINITE	PROBABLE	POSSIBLE
ACUTE (in hospital)	0%	0%	0%
SUBACUTE (30 Days)	0.7% (2)	0%	0%
LATE	0.3% (1)	0%	0%
VERY LATE (1 YEAR – 5 Years)	1.7% (5)	0.7% (2)	2.1% (6)

*Stent thrombosis defined by ARC (Cutlip D. et al., Circulation, 2007) Verheye S., oral abstract presentation, EuroPCR 2013

Axxess PLUS & DIVERGE Pooled Analysis

Presented by STEFAN VERHEYE at EuroPCR 2014 On Behalf of the DIVERGE and AXXESS PLUS Investigators

AXXESS PLUS and DIVERGE Pooled Data

Prospective, Single-arm, Multi-center registries 400 patients Europe, South America, Australia & NZ

onn

Pooling of 5 year clinical data, FU: 93.8%

1° Endpoint: MACE at 5 years defined as a composite of all death, MI and ischemia-driven TLR

	AXXESS PLUS	DIVERGE	POOLED ANALYSIS
Enrollment	139	302	
		Excluded patients*	
Patients receiving additional stents other than Cypher**	32	0	
Patients with LM lesions	6	0	
Patients who did not receive an Axxess stent	2	4	
Available for analysis	102	298	400
TCT-AP 2015	* Some patients were excluded for ** Other stents: Taxus (11), BMS (3 Verheve S., oral abstract present	more than one reason) or straight Axxess (18) ation. EuroPCR 2014	universit klinikum

Medina Class All Patients

universitäts klinikumbonn

5-year Adjusted Clinical Outcomes KM Estimates (Pooled Data)

Primary endpoint, its components, and cardiac events

TCT-AP 2015

** Stent thrombosis defined by ARC (Cutlip D. et al., Circulation, 2007) *** PMI: Periprocedural MI

Adjusted MACE* Rates at 5 Years

TCT-AP 2015

* MACE: a composite of all Death, MI and id-TLR ** Log rank p-value universitäts klinikumbonn

Comparison with the 5-year Follow-up of the Nordic Bifurcation Study*

* Maeng M. et al., J Am Coll Cardiol. 2013; 62(1):30-34

** MACE: composite of all death, MI (excluding peri-procedural MIs) and id-TLR; *** PMI : Periprocedural MI

**** Stent thrombosis defined by ARC (Cutlip D. et al., Circulation, 2007)

TCT-AP 2015

This comparison is for descriptive purposes only

Conclusions

- The pooled analysis of the DIVERGE and AXXESS PLUS trials confirmed the safety and efficacy of the Axxess Biolimus A9-eluting stent up to 5 years.
- In a complex patient population with 77% true bifurcations treated, the use of the Axxess stent resulted in a pooled analysis in low equivalent 5-year event rates both in the MV group and MV+SB group.
- Using the Axxess stent including SB stenting did not result in higher adverse events: overall death, MI, ST.
- The Axxess stent is the only dedicated bifurcation drug-eluting stent that has data out to 5 years in a large number of patients.
- This pooled analysis supports the hypothesis that Axxess, the dedicated bifurcation stent has the potential to outperform provisional stenting in clinical events when being combined with newer generation DES.

Case example (AXXESS Stent in LAD/D1)

LAD/D1 Bifurcation Lesion

AXXESS Stent advanced

AXXESS Stent partially deployed

AXXESS Stent partially deployed (reaching into LAD and D1)

universitäts klinikum**bonn**

AXXESS Stent fully deployed (reaching into LAD and D1)

AXXESS Stent deployed (Control)

AXXESS Stent fully deployed (Postdilatation)

AXXESS Stent Final Result (distal markers reaching down into LAD and D1 and covering the carina)

In Conclusion:

Do I need a Dedicated Bifurcation Stent in My Practice?

- Definitely: Medina 1-0-0
- Medina 1-0-1. Medina 1-1-1 and a viable SB that feeds a large territory?
- Young Patients that need possibly future interventions?
- With Axxess, I no longer strategise my patients for Culotte, DK Crush,V or any other technique.
 - Immediate Term: It's faster & reduces radiation
 - Mid to Long term: Lower ST & ISR
- Yes I still perform Provisional Stenting, with POT & if compromised SB, I will perform TAP

Thank You for Your Kind Attention

