Stem Cell Therapy for STEMI: When PCI is Not Enough

Stephen G. Ellis, M.D. Professor of Medicine Director, Invaasive Section and Co-Director, Cardiac Gene Bank The Cleveland Clinic

Supported by NIH U01 HL087314-01

Acute MI

CHF and Cardiogenic Shock-Declining but Still Important

 Of 300,000 STEMI patients* surviving to present to hospital annually in US

		30 day
	Percent	Mortality
Killip II	8-10	15
Killip III	6-8	30
Killip IV	4-5	50

~ 60,000 patients at high risk/yr

* 1,000,000 15 years ago

GISSI I, Lancet 2:397 '86 G ASSENT 2, Lancet 354:716 '99 S AHA Heart Disease and Stroke Statistics, 2005

GUSTO 2B, NEJM 336:1621 '97 SHOCK Reg, JACC 36:1063 '00

SGE; 0802-1, 2

Cardiac Regeneration

Homing After MI

- Stem cell population (CD 117+ CD 34-) from Rosa 26 mice injected IV into radiated-induced marrowablated mice
- LAD occlusion 10 wks later
- Post mortem 3 wks later
- 3% endothelial cell and 0.02% myocytes LacZ ⊕

Jackson and Goodell, JCI '01 SGE; 0202-2, 27a

Stem Cell Therapy and Myogenesis

Homing / BM Cells Injected IV Decrease Infarct Size

- Athymic nude rat infarct model
- GCSF mobilized human CD34+ cells
- Injection into tail vein 2x 10⁶ cells 48 hrs post MI
- Sacrifice at 2 wks

CD45-hematopoietic lineage CD117-undifferentiated BMSC marker CD14-monocyte/macrophage marker

Doubts about Meaningful Transdifferentiation

Murray, Nature 428: 664 '04 Lin⁻c-kit⁺ X-gal or GFP ⊕ cells injected into periinfarct zone or via bone marrow tx 5 hrs after LAD ligation in a mouse model

Bone marrow transplant (2-4 cells/heart) No labeled cardiomyocytes seen after myocardial injection (7-36d)

Balsam, Nature 428: 668 '04 Lin⁻c-kit⁺ or Lin⁻c-kit⁺ Thy 1.1¹⁰ Sca-1⁺ GFP labeled cells injected into border zone or IV (parabiotic vasculature) 3-5 hrs post MI

GFP/B220 merge

No GFP ⊕ cardiomyocytes, but GFP CD45, B220 and Gr-1 ⊕ (hematopoietic) cells

No ↓ MI size or ↑ survival

SGE; 0404-1, 1

Cell Death After Transplantation

Gr=Grafted cell

- Syngeneic Fischer 344 rats
- 0.5-4x10⁶ cells injected into center of cryoinfarct
- Adult cells do not survive
- Only 25% of animals with neonatal cells have host-transplant connection by 8 weeks vs 60% early

Reinecke Circ. 100:193 '99 SGE; 0802-1, 13

Enhancing Stem Cell Survival

- Rat infarct model (LAO ligation)
- MSC retrovirustransfected (pMSCV) with either Akt or GFP/LacZ
- MSC injected 1 hour later into border zone

Possible Mechanisms of Action

SGE; 0207-2, 35

Possible Mechanisms of Action

Paracrine Effect (↓ apoptosis; ↑ CSC)

Improved LV Function

Mechanical Advantage from 1 LV wall thickness

Acute Injury – short-lived ↑ inflammation and healing

Direct Cellular Benefit

Transdifferention
Fusion

Angiogenesis

SGE; 0207-2, 36

Stem Cell Rx for AMI or CHF

Delivery Options

Intracoronary

- Intravenous/homing dependent
- Transvenous (coronary sinus)
- Direct intramyocardial injection: OHS or catheter based

SGE; 0204

Improvement in LVEF with Primary PCI

	Lytics	PCI	No Pts.
PAMI (NEJM '93)	56	56	395
Zwolle (JACC '94)	44	50	301
Mayo Clinic (NEJM '93)	50	53	108
Weighted Ave	50.7	53.3	

Limited Temporal Upregulation After Infarction

Askari et al. Lancet. 362:697, 2003

Cell Retention After IC Injection for Acute MI

Limited Retention

- BMC or CD34+ enriched (CliniMACSplus/CD34+ Ab from Miltenyi Biotech) cells 18F-FDG labeled)
- Cell transfer 5-10 days after PPCI (n=3pts/grp)
- 3D PET scanning 50-75 min after IC cell transfer

Stem Cells for AMI-Metaanalysis

Study or Subcategory RCTs	Ν	Treatment, Mean (SD), %	Ν	Control Mean (SD), %	Favors Control	Favors BMC Treatment	Weight, %	WMD (Random), % (95% Cl)	
Assmus et al, ¹⁴ 2006 (BMCs)	28	2.90 (3.60)	18	-1.20 (3.00)		_	8.09	4.10 (2.18 to 6.02)	
Assmus et al, ¹⁴ 2006 (CPCs)	26	-0.40 (2.20)	18	-1.20 (3.00)	_		8.33	0.80 (-0.82 to 2.42)	
Chen et al, ¹⁶ 2004	34	18.00 (6.71)	35	6.00 (7.91)		→	6.62	12.00 (8.54 to 15.46)	
Erbs et al, ¹⁷ 2005	11	7.20 (11.47)	11	0.00 (8.97)			2.80	7.20 (-1.40 to 15.80)	
Ge et al, ¹⁸ 2006	10	4.80 (9.56)	10	-1.90 (5.85)	-	►	3.68	6.70 (-0.25 to 13.65)	
Hendrikx et al, ¹⁹ 2006	10	6.10 (8.60)	10	3.60 (9.10)			3.21	2.50 (-5.26 to 10.26)	
Janssens et al, ²⁰ 2006	33	3.40 (6.90)	34	2.20 (7.30)		-	6.68	1.20 (-2.20 to 4.60)	
Kang et al, ²¹ 2006 (AMI)	25	5.10 (9.32)	25	-0.10 (12.43)	_		4.26	5.20 (-0.89 to 11.29)	
Kang et al, ²¹ 2006 (OMI)	16	0.00 (12.80)	16	0.20 (10.61)			3.01	-0.20 (-8.35 to 7.95)	
Lunde et al, ²³ 2006	50	1.20 (7.50)	50	4.30 (7.10)			7.21	-3.10 (-5.96 to -0.24)	
Meyer et al, ²⁴ 2006	30	5.90 (8.90)	30	3.10 (9.60)			5.43	2.80 (-1.88 to 7.48)	
Ruan et al, ²⁷ 2005	9	5.96 (11.10)	11	-3.21 (7.18)			2.89	9.17 (0.77 to 17.57)	
Schächinger et al, ²⁸ 2006	95	5.50 (7.30)	92	3.00 (6.50)		— — —	8.04	2.50 (0.52 to 4.48)	
Li et al, ³¹ 2006	35	7.10 (8.00)	35	1.60 (7.00)			6.55	5.50 (1.98 to 9.02)	
Subtotal	412		395				76.79	3.64 (1.56 to 5.73)	
Test for Heterogeneity: $\chi_{13}^{+}=59.81$ Test for Overall Effect: Z=3.42 (P<	(<i>P</i> <.001), <i>I</i> ² : .001)	=78.3%							
Bartupek et al ¹⁵ 2005	10	7 10 (12 26)	16	4 20 (12 44)		_	2.68	2.80 (-6.08 to 11.68)	
Katriteis at al 22 2005	15	1.05 (7.10)	10	1.62 (6.03)			2.00	0.33 (-5.57 to 6.23)	
Mocini et al 252006	18	5.00 (7.65)	18	1.02 (0.55)			4 90	4.00(-1.29 to 9.29)	
Perin et al ²⁶ 2004	11	5 10 (6 47)	9	-3.00 (10.12)			3.28	8 10 (0 46 to 15 74)	
Strauer et al ²⁹ 2002	10	5.00 (9.06)	10	4 00 (7 00)			3 59	1.00 (-6.10 to 8.10)	
Strauer et al. ³⁰ 2005	18	8.00 (8.06)	18	1.00 (10.00)		_ >	4.38	7.00 (1.07 to 12.93)	
Subtotal	87	()	82	· · · ·			23.21	383(118 to 6.48)	
Test for Heterogeneity: $\chi_5^2 = 4.32$ (<i>I</i> Test for Overall Effect: Z=2.83 (P=	P=.51), / ² =0 .005)	9%	02				20.21	0.00 (1.10 to 0.40)	
Total	499		477				100	3.66 (1.93 to 5.40)	
Test for Heterogeneity: $\chi_{2}^{2} = 64.73$	(<i>P</i> <.001), <i>I</i> ² :	=70.6%				•			
Test for Overall Effect: Z=4.14 (P<	.001)								
	- /				-10 -5 (5 10			
Abdel-Latif, Arch Intern	Med. 2	007;167:989	-997		WMD Rando	om (95% CI)			

0111-1, 27

Improvement of MRI - Determined LVEF is Sustained 5 Years After Progenitor Cell Therapy

Death, Re-MI, Heart Failure at 4-6 Months in Randomized, (Placebo)-Controlled BMC Trials

SGE; 1009-1, 4

Stem Cell Therapy

Repair-AMI

SGE; 1008-1, 03

IC Progenitor Cells for Acute MI-Impact of Infusion Timing

0111-1, 29

TIME Trial

Patients:

Anterior MI <48 hrs with EF<45% and no prior MI or CABG

Randomized Treatments:

IC BMMNC (150 million cells) vs placebo (2:1), and Treatment at 3 vs 7 days (1:1) (factorial design, n=120)

Primary and Key Secondary Endpoints:

1) Change in global and infarct area function by MRI, baseline to 6 months

NHLBI CV Cell Therapy Network: Cleveland Clinic, Minneapolis Heart Institute, Texas Heart Institute, U. Florida, Vanderbilt SGE; 0207-2, 3

LATE TIME Trial

Patients:

Anterior MI <48 hrs with EF<45% and no prior MI or CABG

Randomized Treatments:

IC BMMNC (150 million cells) vs placebo (2:1) (n=87)

Primary and Key Secondary Endpoints:

1) Change in global and infarct area function by MRI, baseline to 6 months

NHLBI CV Cell Therapy Network: Cleveland Clinic, Minneapolis Heart Institute, Texas Heart Institute, U. Florida, Vanderbilt

SGE; 0207-2, 3

Phase III REPAIR-AMI2-EU (n=1450)

Double-blind, placebo (sham)-controlled, randomized (2:1), multicenter trial; central cell processing facility; Primary endpoint: composite death, reMI, or hospitalization for heart failure at 2 years; PI Andreas Zeiher

Stem Cells – Ideal Characteristics

- Large numbers easily accessible
- Autologous or immune privileged
- Pleuripotent
- Relevant cytokine producing
- Ischemic resistant

SGE; 0208-7, 03

Autologous

Resident Cardiac Progenitor

Selected MMNC (CD34, CD133,

Allogenic

Enriched

Skeletal Satellite

Peripheral EPCs

MAPCs, MIAMIs)

Adipose-derived EPCs

Non-Enriched

Unselected BMMNC

d Adult

Mesenchymal

Embry SC Cord-derived Amniotic fluidderived

Embryonic

•Even fibroblasts improve passive mechanics •For abbreviations, see Science 315:760, 2007

Cardiac Stem Cell Therapy

Which Cells are Best?

Athymic nude rat CAD occlusion model randomized at 7 days to MSC (1.2 x 10⁶ cells) CO34⁺ (6x10⁵ cells) intracardial injection

Cardiac Stem Cell Therapy

Stem Cell Numbers and Function are Diminished in Target Populations

Ischemic Heart Disease

*p < 0.05 vs. class I **p<0.05 vs. class II ***p<0.005 vs. class II

> Valgimigli, Circ 110:1209,'04 SGE; 0207-2, 4

REGENT

Study Design and Patient Characteristics

200 consenting STEMI pts age 18-75 Reperfused with PCI < 12 hr from onset LVEF < 40% BMMNC obtained using FicoII gradient from 50-70 ml marrow cells (1.8x10⁸) cells) CD34⁺ CXCR4⁺ cells selected using immunomagnetic separation (MidiMACS, milteny:Biotec GmIoH) After FicoII, from 100-120 ml marrow cells Randomized to selected, non-selected cells or placebo given ic 3-12 days post MI Primary endpoint: △ EF baseline→6 months

Age	57±12 yrs
Diabetes	21%
LAD infarct	100%
Hrs to reperfusion	5 ± 12 hrs

REGENT

Tendera, EHJ 30:1313 '09

SGE; 1009-1, 12

Induction of Pluripotent Stem Cells (iPSC) from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

- 24 candidate genes transfected alone or in groups to mouse embryonic fibroblasts
- Pluripotent state detected by resistance to G418
- Sequential withdrawal of identified genes
- Oct 3/4, Sox 2, c Myc, Klf4 together required.

Takahashi et al. Cell 126;663 '06

SGE; 1006-1, 2

Induced Pluripotent Stem Cells

SGE; 0408-2, 4

Stem Cell Therapy

miR – 499 Drives CSC Differentiation

Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells

Genta Narazaki, MS; Hideki Uosaki, MD; Mizue Teranishi, BS; Keisuke Okita, PhD; Bongju Kim, PhD; Satoshi Matsuoka, MD, PhD; Shinya Yamanaka, MD, PhD; Jun K. Yamashita, MD, PhD Circulation 118:498 18

OP9 ES iPS Beating colony #/well Nkx2.5 25 αMHC Common Undifferentiated iPS cells progenitors 20 MLC 2a O Fik1+ Cardiac ക progenitors SSEA1⁺ VEGF MLC 2v Cardiomyocytes 15 OP9 OO / Fiki-aMHC+ Nkx2.5+ Remangioblast? OFIkI+ HCN4 Flk1⁺ CXCR4⁺ ъ. Fiki 10 EB5 ES Cels 38D2 iPS cells (n=7) 20D17 iPS cells Cx40 VEGF PDGF-BB **B-Actin** Blood Endothelia Mural 5 39C2 iPS cells D3 ES cells cells B FILIT cells cells Fik1 CD45+ Fik1-aSMA VE-cadherin⁺ 50 0 PECAM1⁺ Flk-day 4 day 5 day 6 Atrial AM/cAM Ventricular Arterial Pacemaker 0 Venous B Conduction syste Lymphatic ^{___}OP9 Blood vessel Heart TO -50 Cx43 cTnT 0.0 0.1 0.2 0.3 0.4 0.5 Merge Time (sec) SGE; 0808-2, 01

Issues with iPSC

- Multiple protocols (Adv, plasmids, transposons...)
- C-Myc appears to be oncogenic -> 2 or 3F iPS lines (Oct 3/4, Sox2, Klf4 [Oct4 req'd],) or with proteins alone
- Reprogramming activates p53 -> apoptosis/senescence
- Generally low efficiency
- Many intermediately reprogrammed states often d/t epigenetic memory, different methylation patterns
- Need to remove viral transgenes to decrease risk of teratoma formation
- Efficiency → cardiomyocytes (eg sequentially BMP4 → bFGF, Activin A → VEGF, DKKI → bFGF) also low

Shi, Cell Stem Cell 3:568 '08, Zhou Cell Stem Cell 4:381 '09, Kamp Circ Res 105:617 '09

iPSC for Limb Ischemia

- iPSC generated from human fibroblasts by lentivirus transduction of Oct 4, Sox 2, Nanog and Lin 28
- iPSC → MSC with protocol including bFGF, PDGF, EGF
- Sorted for CD24⁻ CD105⁺, cloned and expanded[△]
- IM injection into SCID mouse FA excision model
- Designed to overcome limitations of nMSCs - limited proliferation, differentiation, cytokine exp (esp with aging) and of undifferentiated iPSC - teratomas

