

Samsung Medical Center Sungkyunkwan University School of Medicine

Side Branch Stenosis and Occlusion After Main Vessel Stenting: Predictors and Outcomes

Joo-Yong Hahn, MD/PhD Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Korea

Disclosure

Grant support

- Korean Society of Interventional Cardiology
- Ministry of Health & Welfare, Republic of Korea
- Sungkyunkwan University Foundation for Corporate Collaboration
- Abbott Vascular, Boston Scientific, Biotronik, Biometrics, and Medtronic

Consulting Fees/Honoraria

 Abbott Vascular, Astra Zeneca, Biotronik, Biometrics, Daiichi Sankyo, Pfizer, and Sanofi-Aventis

Provisional approach and SB occlusion

- The provisional approach is now regarded as the standard technique for most coronary bifurcation percutaneous coronary intervention (PCI).
- However, one of the serious procedural complications of the provisional approach is side branch (SB) occlusion after main vessel (MV) stenting.
- There have been limited data on predictors and outcomes of SB occlusion.

SB occlusion after MV stenting

- It is not uncommon (7-20%).
- Risk factors
 - Severity and length of SB ostial stenosis, plaque burden in SB ostium, narrow bifurcation angle, size and/or pressure of MV stent
- Limitations of previous studies
 - Small sample size
 - Small SB (with a diameter of >1 mm)
 - Mostly non-true bifurcation lesions
 - No data on left main lesions
 - No information of procedure for the SB
 - Limited data on long-term clinical outcomes

Patients selection from the COBIS II

Independent predictors of SB occlusion

* SB occlusion after MV stenting was defined as TIMI flow <3 (N=187, 8.4%)

Variables	Odds ratio [95% CI]	p Value
Pre-procedural SB DS ≥50%	2.34 [1.59-3.43]	<0.001
SB lesion length (by 1 mm)	1.03 [1.003-1.06]	<0.001
Pre-procedural proximal MV DS ≥50%	2.34 [1.57-3.50]	0.03
Acute coronary syndrome	1.53 [1.06-2.19]	0.02
Left main lesions (vs. non-left main lesions)	0.34 [0.16-0.72]	0.005

* DS = diameter stenosis, SB = side branch, MV = main vessel

jailed wire technique, SB predilation, IVUS guidance: not associated with SB occlusion

Plaque Distribution

 Carina is spared.
Abcarinal zone is most diseased, and also lipidrich.

Plaque shift comes from proximal MV

Pre- and post-stenting IVUS for MV and SB (N=44)

Clinical Impact of SB Occlusion

	SB occlusion (n=187)	No SB occlusion (n=2040)	Unadjusted HR (95% CI)	p Value	Adjusted HR* (95% CI)	p Value
Death	10 (5.3)	74 (3.6)	1.6 (0.8-3.0)	0.20	1.5 (0.8-3.0)	0.24
Cardiac death	7 (3.7)	20 (1.0)	4.0 (1.7-9.4)	0.002	4.2 (1.7-10.6)	0.002
МІ	4 (2.1)	32 (1.6)	1.4 (0.6-4.1)	0.49	1.5 (0.5-4.4)	0.46
Cardiac death or MI	10 (5.3)	50 (2.5)	2.3 (1.2-4.5)	0.02	2.3 (1.2-4.8)	0.02
Stent thrombosis	6 (3.2)	9 (0.4)	7.7 (2.7-21.6)	<0.001	6.2 (2.0-19.1)	0.002
TLR	14 (7.5)	129 (6.3)	1.3 (0.73-2.2)	0.41	1.3 (0.7-2.3)	0.36
MACE	23 (12.3)	164 (8.0)	1.6 (1.1-2.5)	0.03	1.62 (1.1-2.6)	0.03

*Adjusted covariates included diabetes, acute coronary syndromes, true bifurcation, left main lesion, use of intravascular ultrasound, SB predilation, MV stent diameter, and MV stent maximal pressure

Clinical Impact of SB Occlusion

Fate of Occluded SB

TCTAP 2015

Predictors of SB recovery

	SB recovery (n=129)	No SB recovery (n=58)	p Value
Bifurcation location			0.65
Left main bifurcation	9 (7.0)	5 (8.6)	
LAD/diagonal	84 (65.1)	40 (69.0)	
LCX/OM	25 (19.4)	7 (12.1)	
RCA bifurcation	11 (8.5)	6 (10.3)	
True bifurcation	94 (72.9)	45 (77.6)	0.49
Jailed wire in the SB	92 (71.3)	31 (53.4)	0.02
SB predilation before MV stenting	45 (34.9)	16 (27.6)	0.33
Guidance of intravascular ultrasound	39 (30.2)	13 (22.4)	0.27
MV stent diameter (mm)	3.0 (3.0-3.5)	3.0 (2.9-3.5)	0.62
MV stent length (mm)	24.0 (20.0-30.0)	24.0 (20.0-32.0)	0.91
MV stent maximal pressure (atm)	12.0 (10.0-15.5)	12.0 (10.0-14.0)	0.57
MV stent to artery ratio	1.2 (1.1-1.3)	1.2 (1.1-1.4)	0.25

Summary

- SB occlusion after MV stenting occurred in 8.4% of bifurcation lesions treated with provisional approach.
- Angiographic findings of the SB, proximal MV stenosis and clinical presentation are associated with occlusion of SB after MV stenting.
- Occlusion of sizable SB is associated with adverse clinical outcomes.
- Jailed wire in the SB may be helpful for recovery of the occluded SB.

SB stenosis after MV stenting

Most of jailed SB lesions do not have functional significance.

Correlation between FFR and % stenosis (n = 73)

TCTAP 2015

SB residual stenosis and cardiac death or myocardial infarction

Samsung Medical Center

SB residual stenosis and TLR

Differential Effects of SB Intervention According to SB Stenosis after MV Stenting

adjusted HR 0.22; 95% CI 0.09 to 0.52; p=0.001 adjusted HR 1.36; 95% CI 0.58 to 3.20; p=0.48

Summary and possible explanation

- Residual stenosis of sizable SB affected long-term clinical outcomes mainly due to increased myocardial infarction.
 - Natural course! They are sizable SBs.
 - Underexpansion of MV stents related with SB compromise
 - Mere reflection of more advanced coronary artery disease
- SB intervention may be beneficial in bifurcation lesions with (significant) residual stenosis of SB after MV stenting.