TCTAP 2015, in Seoul, Korea 2015.4.30

Advanced Tips for Closure of Atrial Septal Defects

Satoshi Yasukochi, MD, Heart Center, Nagano Children's Hospital, Japan

Thank you !

Dr. Jae Young Choi

I would like to express my many thanks for his very kind assistance and help to prepare this presentation. Most of the slide courtesy from Dr. Choi <u>Nagano Children's Hospital</u>

Technical difficulties to close defect

- Complex anatomy
 - deficient rim
 - large defect
 - multiple defect
 - vascular access IVC occlusion
- Complex clinical condition
 - small children +/- large defect
 - elderly with impaired LV diastolic function
 - ASD + PAH

Large Defects ± Deficient Rim(s)

- Difficulties in device implantation

Prolapse of LA disc to RA

Difficult to grab/hold the floppy or thin rim

Large Defects ± Deficient Rim(s) - Misalignment of Disc to atrial septum

Large Defects ± Deficient Rim(s)

Misalignment of ASO disc to atrial septum

Set the plane of ASO disc parallel to that of atrial septum to prevent the prolapse of the disc

Large Defects \pm Deficient Rim(s) - Set the Disc in the plane of atrial septum

- Advanced tip of Technical Modifications-

- 1. Waist deployment in LA
- 2. Rotation of sheath in LA
- 3. RUPV technique (hypomochlion technique, LA roof technique)
- 4. LUPV technique
- 5. Stiff sheath (dilator) technique (Wahab technique)
- 6. Bending (pre-shaping) / cutting of sheath tip
- 7. Use of Hausdorf-Lock sheath
- 8. Balloon-assisted technique
- 9. Straight side hole sheath technique
- 10. Steerable sheath technique
- 11. Use of JR guiding catheter
- 12. Transhepatic approach

- Open Waist in LA -

- Rotating the Sheath -

 deploy the waist of the device (part of RA disk) before pulling the device back from LA into the defect (promotes self-centering in the defect)

- Clockwise rotation of the sheath may redirect LA disk to be more parallel to the septum
- Counterclockwise rotation from the mouth of atrial appendage
 - : grip aortic root better Harper RW et al. CCI 2002;57:508

Nagano Children's Hospital

LUPV Technique

American Foot ball Technique

Varma C et al. Catheter Cardiovasc Interv 2004;61:131

- RUPV Technique -

from the orifice of RUPV

from the inside of RUPV

Berger F et al. J Interv Cardiol 2001;14:63 Kannan BR et al. Catheter Cardiovasc Interv. 2003;59:522 Varma C et al. Catheter Cardiovasc Interv 2004;61:131

Clockwise rotation technique

LA roof technique

Clockwise rotation technique LA roof technique

- Stiff Sheath (Dilator) Technique -

- Deploy LA disc in left atrium
- Advance dilator of delivery sheath and hold superior anterior portion of LA disc in LA : to ensure anterior-posterior orientation, \rightarrow lateral projection may be helpful
- Deploy the waist and RA disc
- Withdraw dilator back

Wahab HA et al. Catheter Cardiovasc Interv 2003;60:543

- Balloon assist Technique -

AP-View

lateral-View

Meditec Equalizer Balloon Cath. (BostonScientific)
Extrastiff wire (Amplatzer, Lunderquist, Meier..)

- Balloon assist Technique -

RUPV approach

LUPV approach

- Sizing Balloon Cath. (AGA or NuMed)

-Tyshak balloon cath. can be used (lower profile for small children)

- Amplatzer Extrastiff wire

- Advanced tip of Technical Modifications-

- 1. Waist deployment in LA
- 2. Rotation of sheath in LA
- 3. RUPV technique (hypomochlion technique, LA roof technique)
- 4. LUPV technique
- 5. Stiff sheath (dilator) technique (Wahab technique)
- 6. Bending (pre-shaping) / cutting of sheath tip
- 7. Use of Hausdorf-Lock sheath
- 8. Balloon-assisted technique
- 9. Straight side hole sheath technique
- 10. Steerable sheath technique
- 11. Use of JR guiding catheter
- 12. Transhepatic approach

Modification of delivery sheath

- Bending or Cutting of Sheath Tip -

- Stiff device / cable inside sheath:
 → may straighten curvature
- Kinking of sheath may occur while remold the sheath

 Sharp edge of sheath :

 → should be careful to avoid damage to heart / vessel
 Nagano Children's Hospital

- Straight Side Hole Sheath -

Creating straight side-hole sheath from Mullin's transseptal sheath

Kutty S et al. Catheter Cardiovasc Interv 2007;69:15

Modification of delivery sheath

- Specially Designed Delivery Sheath -

Housdorf-Lock sheath (Cook) 10-12F
 Judkins Rt.Coronary guiding catheter
 New "steerable " sheath: Agilis

Hausdorf sheath

JR Guiding Catheter

Steerable sheath

Staniloae CS et al. J Invasive Cardiol 2003 / Varma C et al. CCI 2004 / Pedra CAC et al. J Invasive Cardiol 2004 / Nagm AM et al. J Invasive Cardiol 2004 Fu YC et al. J Cardiovasc Med 2007;8:30 Nagano Children's Hospital

Modification of delivery sheath

- Steerable Sheath Technique -

- FuStar Steerable Introducer (Lifetech Scientific)

- Available size : 5-14Fr
- FDA approval in Feb 2011

Courtesy of Dr. Yat-yin LAM, Chinese Univ. of Hong Kong

- Advanced tip of Technical Modifications-

- 1. Waist deployment in LA
- 2. Rotation of sheath in LA
- 3. RUPV technique (hypomochlion technique, LA roof technique)
- 4. LUPV technique
- 5. Stiff sheath (dilator) technique (Wahab technique)
- 6. Bending (pre-shaping) / cutting of sheath tip
- 7. Use of Hausdorf-Lock sheath
- 8. Balloon-assisted technique
- 9. Straight side hole sheath technique
- 10. Steerable sheath technique
- 11. Use of JR guiding catheter
- 12. Transhepatic approach

Transhepatic approach

ASO cable perpendicular to IAS

Transhepatic approach

Echo-guided puncture of hepatic vein

ASO cable perpendicular to IAS

Fenestrated ASD

Transcatheter closure of ASD Defects

ASO

ASO

2xASO

Cribriform

Fenestrated ASDs

Cable should be passed at the center of fenestrated ASD to cover all fenestration (< 4mm size preferred)

Fenestrated ASDs

Advanced tips to overcome the difficulties of closing ASD by ASO

- 1. Alignment of device to AS to prevent prolapse of disc
 - modification of delivery sheath
 - Device deployment technique: LPRPT
 - Disc assistant technique
- 2. Multiple ASDs
 - covering by one large device
 - overlaps vs interleaving

Take home message

- The key of successful device closure of ASD is to understand the 3D morphological features of ASD and its adjasent structures in each each patients.
- The basic concept of tips in successful deployment of devices is to set the disc of devices in same alignment/plane with atrial septum to prevent its prolapse.
- Meticulous and individualized approach for each patient are mandatory to maximize the efficacy and safety of this versatile therapy