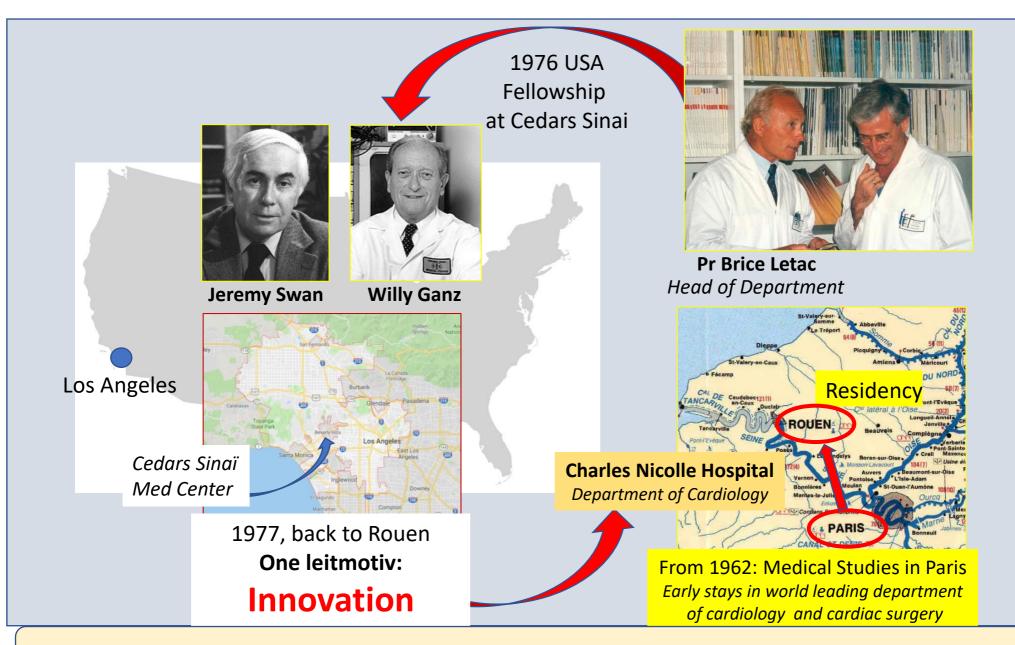
20 years of TAVR From concept to Human Application

Alain Cribier, Rouen University Hospital, France

Disclosure Statement of Financial Interest


Affiliation/Financial Relationship

- Past Consulting Fees/Honoraria (from 2004 to 2020)
- Scientific Advisory Board Fees/honoraria
- Scientific Advisory Board Fees

Company

- Edwards Lifesciences (USA)
- Meril LifeSciences (India)
- ► Cardiawave (France)

Predisposing factors to the birth of TAVR in Rouen, France 1 – Having outstanding mentors

They taught me to never give up! "Perseverance" is the key word for innovation

Predisposing factors to the birth of TAVR in Rouen, France 2 – Working with a wonderful supportive "dream team"

Since the 1990's

An outstanding and rare partnership between *interventional cardiologists* and *cardiac surgeons* and an outstanding team of nurses and technicians

Since 1985 in Rouen

Development of technological innovations in the field of acquired Aortic Stenosis

1985 Balloon Aortic Valvuloplasty

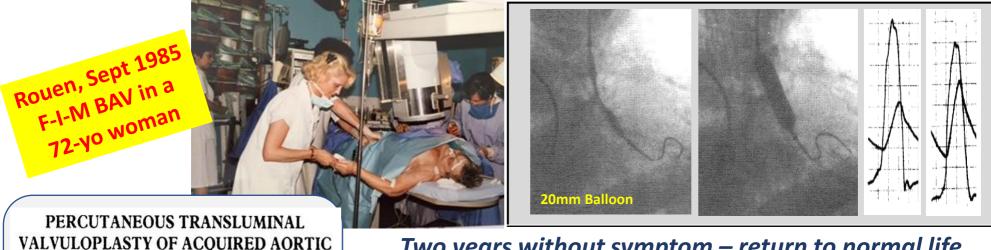
F.I.M. Lancet, 1986

The same goal for these two linked innovations:

To provide a live saving therapeutic option for patients with symptomatic AS and declined for surgical valve replacement

In the 2000s Without SAVR (1/3 of pts): Mortality # 80% at 2 years

In the 1980s, SAVR was declined in all patients older than 70-y (50% of symptomatic pts)


2002 **Transcatheter Aortic Valve**

> **F.I.M.** Circulation, 2002

Attempt to solve a major unmet clinical need

1985: F-I-M Balloon Aortic Valvuloplasty

Trying to enlarge the aortic valve orifice by balloon dilatation

PERCUTANEOUS TRANSLUMINAL VALVULOPLASTY OF ACQUIRED AORTIC STENOSIS IN ELDERLY PATIENTS: AN ALTERNATIVE TO VALVE REPLACEMENT?

A. Cribier et al,

THE LANCET, JANUARY 11, 1986

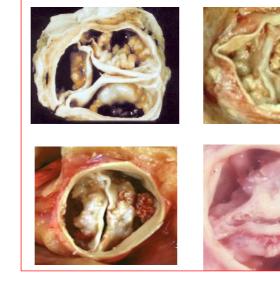
Two years without symptom – return to normal life A bomb effect in the medical community! 1986-1992: Tens of thousands of BAV worldwide

- > 1250 index-articles on BAV, NHLBI and Mansfield registries
- FDA approval in selected cases
- Improvement of symptoms but one major unacceptable limitation:

EARLY RESTENOSIS WHAT TO DO NEXT ?

1990 Birth of the idea of TAVR

As a solution to solve the issue of post-BAV restenosis

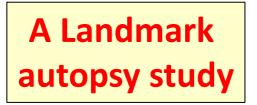

The most challenging "crazy" concept

"Implanting a valve prosthesis within the diseased calcific valve, on the beating heart, using regular percutaneous catheter-based techniques and local anesthesia !..." A. Cribier, 1990

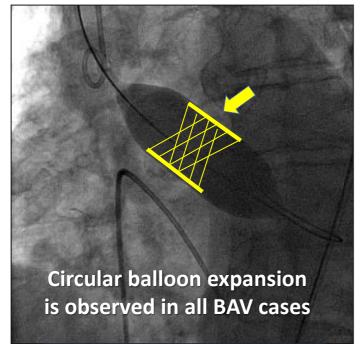
First comments of cardiac surgeons

IMPOSSIBLE !

Heavily calcified valves ! No chance of crossing the diseased valve with a prosthesis and deploy it



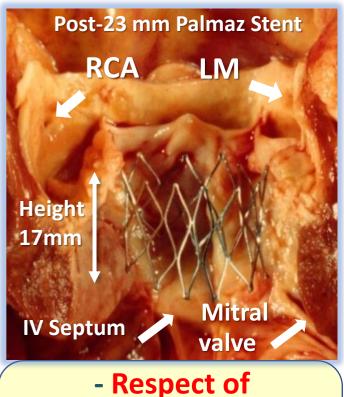
DANGEROUS!


Surrounding Structures !

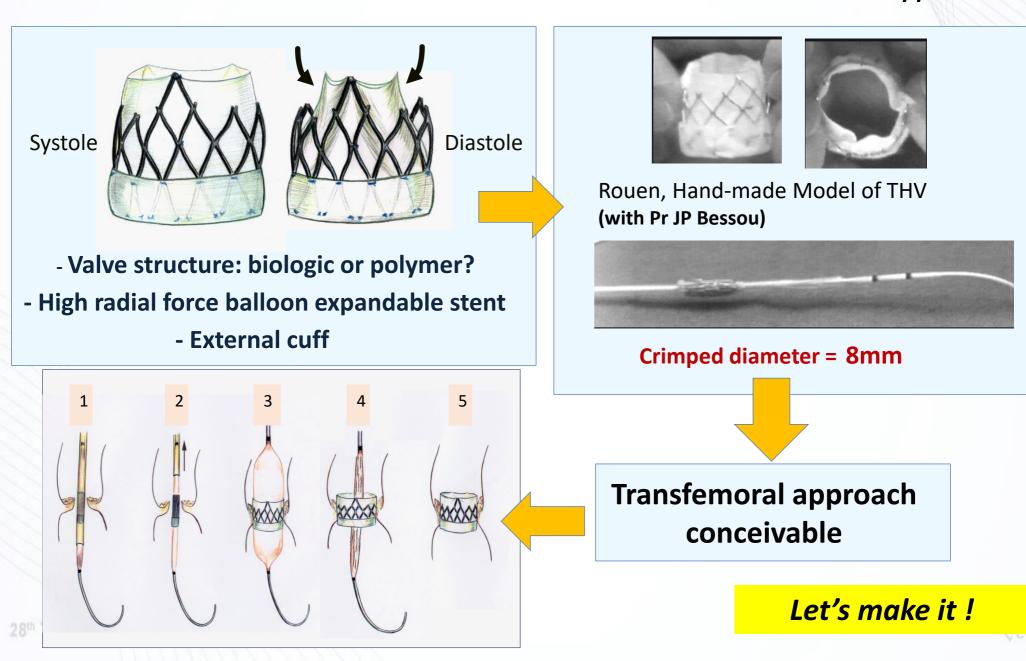
- Above: Coronary ostia
- Below: Mitral valve
 His bunddle

1994 Validation of valvular stenting in AS

Regular obervation during BAV


Question: Could a balloon expandable stent be used to maintain the valve open?

Rouen 1994 (16 fresh specimen of calcific AS) With H. Eltchaninoff and R. Koning



Renu Virmani, MD Washington DC, 2002 Confirmative findings

Respect of adjoining structures
 Forceps needed to remove the stent (traction force 2kg)

Figuring the stented-valve and the procedure of TAVI EU Patent application

Looking for industrial support

Comments from experts of all biomedical companies (Including Edwards and Medtronic)

"Totally unrealistic, major technical issues" Definitely impossible to stent a calcific aortic valve " "Unavoidable life-threatening complications: Stroke, myocardial infarction, annulus rupture, ventricular arrhythmias and conduction disturbances, endocarditis, THV embolization End of the story "Would never be approved by FDA" "Surgery covers 100% of the need. No indication" "Most stupid project ever heard..." Just forget it !!!

1999 Project of TAVI still alive

Creation of a start-up:

Percutaneous Valve Technologies Inc, NJ, USA

Percutaneous Valve Technologies

Requests to the engineers

- A prosthesis made of a highly resistant frame
- Containing a uni-, bi-, or tri-leaflet valvular structure
 - Able to be homogeneously compressed over a high pressure balloon, for its introduction into a sheath (femoral artery) of 7 to 9 mm in diameter
- Enlarged by balloon inflation to an external ø of 23mm without damaging the frame and valvular structure

Two engineers and two cardiologists

December 1999: Signed agreement with ARAN R&D, Caesarea, Israel Investment, Development

2000 The PVT Heart Valve

Tri-leaflet valve (polymer, then horse pericardium) Stainless steel stent Single diameter 23mm 24F crimped size

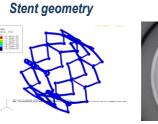
2000-2002 – The PVT Heart Valve Preclinical evaluation

ARAN R&D

VALVE TESTS

Hemodynamics

Durability (5 years)



FRAME TESTS

Radial force

Tri-leaflet valve (polymer, then bovine pericardium) Stainless steel stent Single diameter 23mm 24F crimped size

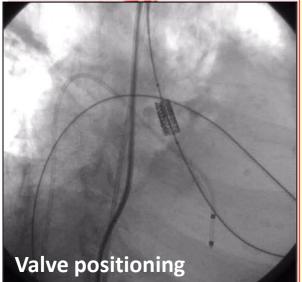
Fatigue testing

FDA request

5 -Month in aorta

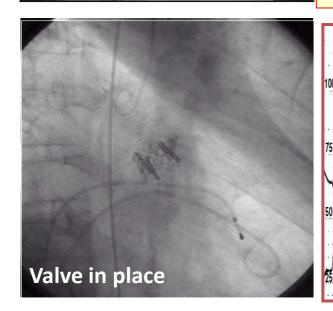
IN-VIVO TESTING, Sheep model Montsouris Institute, Paris

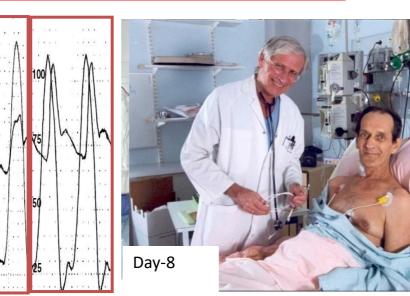
(A. Cribier, H. Eltchaninoff, N. Borenstein)



Orthotopic Ao implantation

April 16th, 2002 - The dream comes true


No general anesthesia No TEE guidance



F-I-M TAVR

57 y/o dying patient Cardiogenic shock, LVEF 12% AVA: 0.68 cm², bicuspid valve Multiple comorbidities Subacute leg ischemia (occluded Ao-bifemoral BP) Floating thrombus in LV No femoral access > Failed transeptal BAV > TAVI as a last resort option Unplanned transeptal approach

A 2nd bomb blast within the medical community

- Stupefaction
- Enthusiasm
- Incredibility and fury of cardiac surgeons

"Him again !.."

2002-2005 First Rouen series: 38 pts, compassionate basis

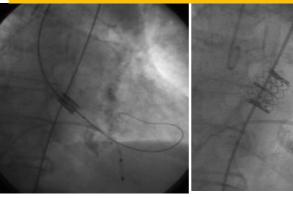
All inoperable - NYHA class 4 - imminent death - transeptal approach (TF retrograde in 7)

75% success (26% MACCEs) – 50% survival 1 to 6.5-year with return to normal life

My intimate conviction that a revolution was underway

Patient # 3

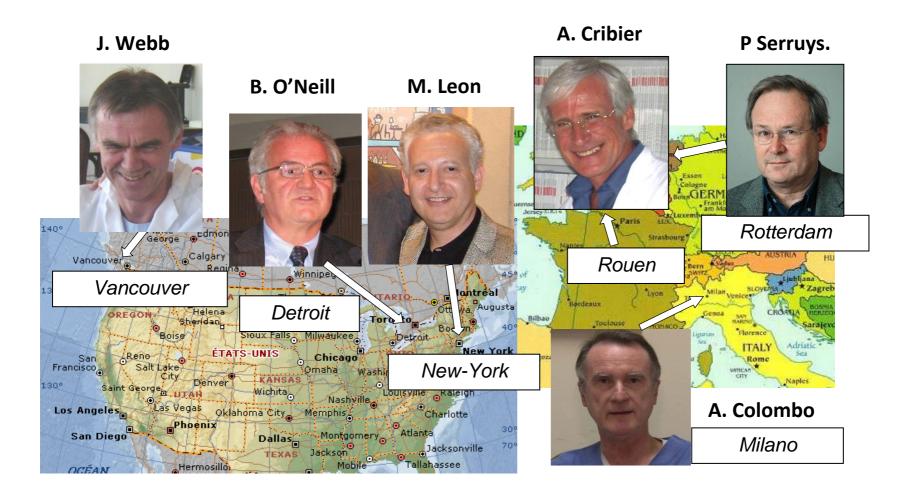
Patient # 10


- 2004- 85 y/o woman with severe AS
- Massive pulmonary edema
- Cardiogenic shock
- Associated MS: no possible TS route

First ever planned TF retrograde approach

- Local anesthesia / sedation
- Uneventful procedure duration: 60 min

First vision of a THV implanted retrogradely


Unchanged hemodynamic results

Better results could be anticipated in less severely diseased patients

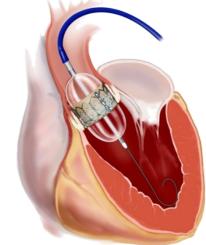
The first steps of TAVR offshore

Some breathtaking results, despite the technically difficult transeptal approach 2005: the 100-patient mark was passed

2004 A major milestone Edwards LifeSciences acquires PVT

Cribier-Edwards

- 23mm size
- Equine pericardium
- 1/3 external coverage
- Sheath size 24F
- Mainly implanted via the transseptal approach



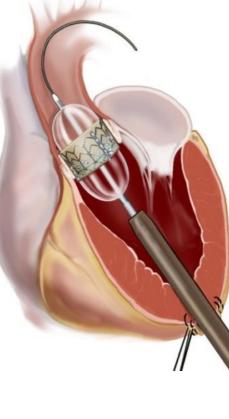
Edwards- SAPIEN

- 23mm and 26mm sizes
- Treated bovine pericardium
- 50% external coverage
- Sheath size 22F and 24F
- Conceived for impantation via the retrograde TF approach

Transfemoral approach

John Webb Vancouver Canada


2006: RetroFlex 3



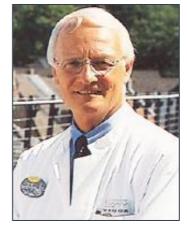
2005 Another revolution *Transapical access*

Surgeons start being involved with in TAVR

The devil enter the OR !

F. Mohr M. Mack T. Walther Leipzig, Germany

SV Lichtenstein *Vancouver, Can*



With TF and TA, almost all TAVR candidates can be treated

2005 Launch of a concurrent device The self expanding CoreValve later acquired by Medtronic

Jacques Seguin

Eberhard Grübe

J.C. Laborde

Start of a fair and ongoing competition between the two TAVR concepts

Smaller 21F sheath size: A convincing feature for many operators

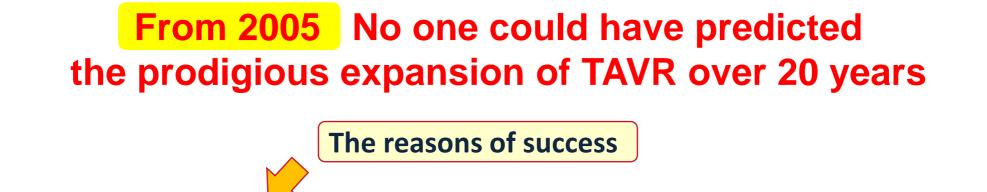
This device in addition to the balloon expandable system plaid an important role in the worldwide expansion of TAVR

The reasons of success

Continuous and rapid technological improvements making TAVR easier, faster, safer Major drop of severe complications

Rigourous scientific evaluation

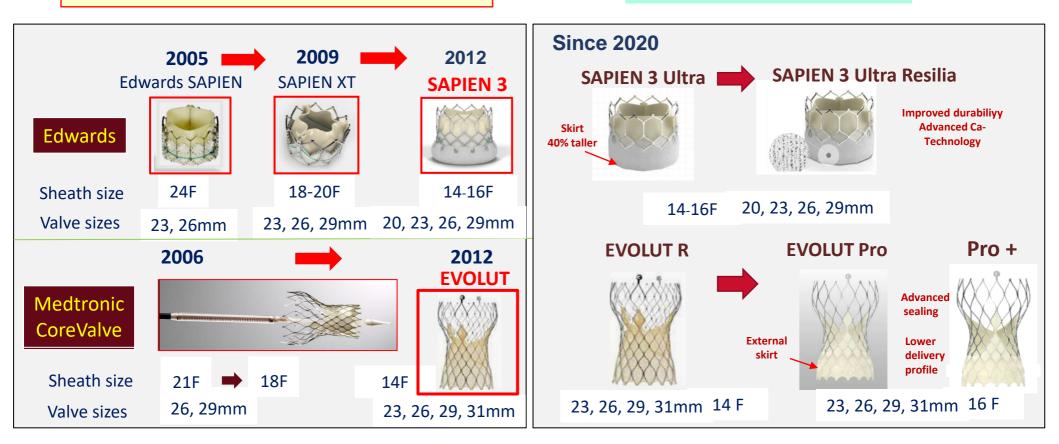
following a challenging and very unusual pathway in medicine from higher risk patients to all comers


The reasons of success

Continuous and rapid technological improvements making TAVR easier, faster, safer Major drop of severe complications

- Better patients screening (MSCT)
- > Alternative approaches
- New TAVI systems, Medtronic CoreValve in first place
- Improved valves and delivery systems (lower profile, multiple sizes, improved frame geometry, prevention of PVL)

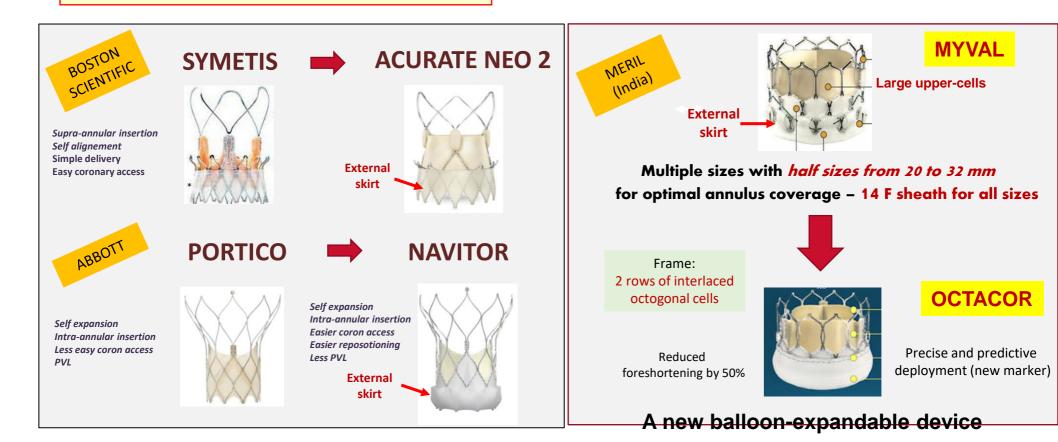
New indications (V-in-V, bicuspid valves)


- Retrograde TF approach in # 95%
 - Minimalist strategy
 - «Democratization » of TAVR

Continuous and rapid technological improvements making TAVR easier, faster, safer Major drop of severe complications

Constant and rapid improvements of TAVI systems

« Historical » valves



The reasons of success

Continuous and rapid technological improvements making TAVR easier, faster, safer Major drop of severe complications

Constant and rapid improvements of TAVI systems

Newer TAVI systems

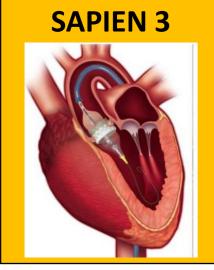
The reasons of success

Continuous and rapid technological improvements making TAVR easier, faster, safer Major drop of severe complications

Rigourous scientific evaluation

following a challenging and very unusual pathway in medicine from higher risk patients to all comers

A new paradigm

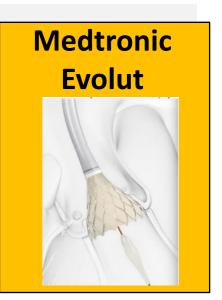

20 years ago, TAVR was conceived for inoperable or very high-risk patients

> SAVR is now reserved for patients who are not optimal candidates for TAVR

Thousands of patients enrolled in

- Multiple national and international controlled registries
- Matched registries versus SAVR
- Randomized trials vs SAVR

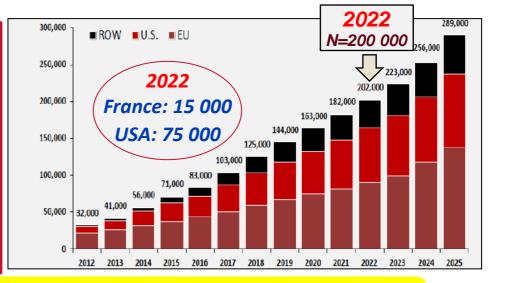
In patients at *decreasing risk*, with Edwards and Medtronic TAVI systems


PARTNER 3

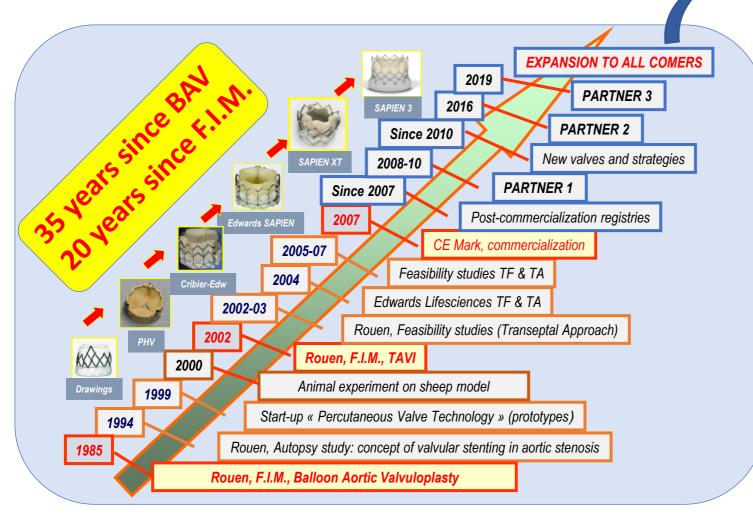
2019

The apotheosis of TAVI

FDA Approved TAVI for LOW-RISK Patients <u>> 65 years</u>


2021 - European recommendations in Low-Risk patients: all patients > 75-year

EVOLUT LOW-RISK


A total of # 2.000.000 TAVI performed worldwide (> 80 countries)

- TAVI market exceed SAVR market in many countries including USA
- Expected growth of >10% per year

And the future of TAVR looks even brighter !

Developing TAVR: A long bulky road

Extension of TAVR indications

Already achieved:

- Valve-in-Valve
- Bicuspid valves

In progress:

- Asymptomatic AS
- Moderate AS + HF
 - High-risk AR
 - TAVR with

concommittent diseases

Besides paving the way for many interventional techniques for treating other valvular and structural heart diseases, TAVR has changed the entire medical culture by bringing the teamwork concept