Optimal Lesion Preparation Strategy with Rotational Atherectomy and Cutting Balloon

Ju Hyeon Kim, MD

Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Korea

Disclosures

I, Ju Hyeon Kim, have NO conflict of interest related to this presentation.

Calcified Plaque

Very bright echoes (brighter than the reference adventitia) with acoustic shadowing of deeper tissue zones.

Since only the leading edge of calcium can be detected, thickness of calcium cannot be determined by IVUS.

Quantified in arc (and length)

Distribution of Calcium

Deep

Superficial

Superficial & Circumferential

J Am Coll Cardiol Intv. 2019;12(15):1465-78.

Wolverine[™] Cutting Balloon[™] Device

Conventional Angioplasty

62626250

Microsurgical Technology

NC Emerge® Catheter platform

Atherotome: microsurgical blade with flex points

WOLVERINE vs. FLEXTOME

- Same mechanism of action
- Improved deliverability and reduced profile

ATHEROTOMES

- Affixed to a nylon non-compliant balloon
- Expand radially as balloon is inflated to score arterial plaque

> **Primary Investigators** Dr. Antonio Mangieri, Dr. Antonio Columbo

Three hospitals in Italy

Maria Cecilia Hospital, Humanitas Rozzano, Clinica Mediterranea

Study Design

• Prospective, randomized, multicenter open-label trial which enrolled 100 patients with significant calcified lesions evaluated at IVUS

Primary Endpoint

• Minimal Stent Area (MSA) at Calcium Site

Secondary Endpoint

- Eccentricity Index : (LD max LD min) / LD max
- MSA
- Device Failure
- Safety: Procedural Complications & One-Year MACE

Study contained a range calcium 100 – 360° and 29.4% avg of deep calcium

	Overall	CB (n=44)	NCB (n=43)	P value
Lesion Type				
Туре В1	25 (28.7)	14 (32.5)	11 (25)	
Type B2/C	62 (71.2)	29 (67.4)	33 (75)	
Calcium distribution				0.482
Mixed Calcium	34 (40)	15 (34.8)	19 (45.2)	
Deep Calcium	25 (29.4)	15 (34.8)	10 (23.8)	
Superficial Calcium	26 (30.5)	13 (30.2)	13 (30.9)	
Arch of calcium (degrees)	266±84	274±84	258±85	0.373
Calcium length (mm)	12±6.6	11.9±7.3	12.5±6	0.667
Lesion length (mm)	24.3±9.7	23.5±9.6	25.1±9.8	0.442
Minimal lumen area (mm²)	3.2±0.9	3.4±1.1	3±0.7	0.02
QCA evaluation				
Reference vessel diameter (mm)	3.4±0.4	3.51±0.3	3.39±0.4	0.112
Percentage of stenosis (%)	81.2±8.1	79.4±7.6	82.7±8.3	0.97

WOLVERINE is clinically proven to provide superior MSA at the calcium site compared to POBA

	CB (n=44)	NCB (n=43)	P value
Final MSA (mm²)	7.1±1.7	6.5±2.1	0.116
Minimal Stent Diameter	2.7±0.4	2.5±0.4	0.064
Maximal Stent Diameter	3.2±0.4	3.1±0.4	0.189
Final MSA at calcium site	8.1±2	7.3±2.1	0.035
Minimal stent diameter at calcium site	2.9±0.7	2.7±0.4	0.016
Maximal stent diameter at calcium site	3.5±0.5	3.3±0.4	0.132
Eccentricity index at calcium site	0.84±0.7	0.8±0.8	0.013

The benefit was magnified in presence of severe calcifications

Cutting balloon to optimize predilation for stent implantation: The COPS randomized trial Catheter Cardiovasc Interv. 2023;101:798-805.

TABLE 3Baseline procedural features of the per-protocolpopulation.

	Overall n = 87	CB n = 44	NCB n = 43	p
Predilatation atmospheres	18.6 ± 4.7	18.3 ± 5	19 ± 4.5	0.463
Diameter of the balloon for predilation	3.1 ± 0.4	3.02 ± 0.3	3.2 ± 0.4	0.031
Balloon to artery ratio	0.89 ± 0.2	0.86 ± 0.1	0.92 ± 0.2	0.057
Number of stent implanted	1.3 ± 0.4	1.3 ± 0.5	1.2 ± 0.4	0.314
Total stent length (mm)	32.9 ± 12	31.6 ± 12	34.2 ± 12	0.837
Stent diameter (mm)	3.3 ± 0.4	3.4 ± 0.3	3.3 ± 0.4	0.737
Postdilatation	67 (77)	33 (75)	34 <mark>(</mark> 79)	0.885
Diameter of the balloon for postdilation	3.5 ± 0.5	3.6 ± 0.6	3.5 ± 0.4	0.497
Postdilatation atmospheres	20.9 ± 0.6	20 ± 5.2	21.7 ± 5.4	0.201

Avoid Rota Regret!

Single 2.75 mm stent placed

Post Dilatation: 3.5x9 mm non- compliant balloon for 30 seconds at 22 ATM followed by 4.0x9 mm non- compliant balloon for 30 seconds at 16 ATM. (figure 1)

Results sub-optimal. (figure 2)

Rotational Atherectomy System.

Lesions which initially appear as either treatable with PTCA or by stenting may benefit from pre-treatment with the ROTABLATOR[™]

Using ROTABLATOR System may favorably impact complications, acute angiographic results, TLR and angiographic restenosis in calcified and complex lesions.¹

Asymmetrical stent expansion occurs in up to 50% of cases where calcium is not treated before stent deployment.²

Results from case studies are not predictive of results in other cases. Results in other cases may vary. Case images courtesy of Dr. Arthur Lee, Santa Clara Valley Medical Center, Kaiser Permanente, San Jose, CA

1. Hoffman R, et al. Comparative Early and Nine-Month Results of Rotational Atherectomy, Stents and the Combination of Both for Calcified Lesions in Large Coronary Arteries. Am J. Cardiology; March 1, 1998: vol. 81, :552-557 2.Moussa, Moses, Columbo et al. Coronary Stenting After Rotational Atherectomy in Calcified and Complex Lesions. Circulation 1997; 96:128-136

©2023 Boston Scientific Corporation or its affiliates. All rights reserved. IC-1554010-AA

J Am Coll Cardiol Intv. 2019;12(15):1465-78.

Who needs a ROTA?

Bail-out rotablation

 \checkmark when device can not cross the lesion (calcification, CTO)

 \checkmark undilatable lesion or stent

Elective rotablation

 \checkmark angiographically severely calcified or moderately calcified tortuous lesion

✓ on IVUS

Calcium >270° 360° of calcium? Calcified nodule?

M/63, chest pain

2.75 * 15mm NC balloon upto 20atm

ROTA 1.75 mm

DES implantation

Calcium fracture

key to adequate stent expansion

If you have some doubts, try balloon first,

because you can always switch to Rotablation as long as you haven't stented.

ROTAPRO[™] Rotational Atherectomy System

Key Procedural Steps

Ablation Procedure Tips (Physician Considerations)

- Do not over-tighten Y-adapter
- Avoid dottering
- Never stop burr in lesion
- Never stop burr distal to lesion
- Never adjust RPMs during ablation
- Never advance rotating burr to point of contact with the guidewire spring tip
- Do not allow the burr to remain in one location while rotating at high speeds
- Gently advance or retract the burr while it is at high-speed rotary motion
- Avoid burring in the guide catheter

Wire: 0.009" that ends 0.014"

-Long, over-the-wire system
-No hydrophilic coating
-Difficult to torque and advance
-Generally, use workhorse wire then exchange for Rotawire

2 types:

-Rotawire floppy: most commonly

 -Rotawire extrasupport (heavier body)→more vessel straightening, wire bias, and ablation of plaque at the lesser curvature of angulated segments
 → Useful for ostial rotablation or distal

The guidewire has a strong tendency to return to its normal shape

*more prominent for extra-support

To maximize the guidewire bias

Don't push too much and don't go too fast!

Lateral cut can be expected by advancing the burr very slowly if appropriate GW bias is present

The stronger the wire, the greater the guidewire bias.

depends on lesion tortuosity, rigidity, and the wire

Rotaburr 1.25mm on Rotawire Extra-support

The Floppy wire and larger burr might have been safer

Stiffer is not always better

Smaller is not always safer

The new ROTAPRO study

The 1st clinical data comparing the new ROTAPRO to legacy ROTABLATOR

Objective: Evaluate safety & feasibility of the new ROTAPRO system for lesion preparation in calcified coronary artery stenosis.

Primary Endpoint: In-hospital MACCE (in-hospital all-cause death, periprocedural MI, recurrent symptoms requiring urgent TVR with PCI or surgery, and stroke).

Secondary Endpoints: Procedural success (technical success without in-hospital MACCE), procedural time, fluoroscopy time, amount of contrast used, major complications. Mohamed Ayoub, Kambis Mashayekshi et al. Caridol. J. 2021 IC-971609-AD Page 36

Results: No differences in in-hospital MACCE Similar in-hospital MACCE & its individual components

ROTAPRO showed numerically lower in-hospital MACCE, TVR, MI, death or stroke vs. legacy Rota , but without any significant differences in p-values.

Results: Secondary Endpoints & Major Complications

Secondary endpoint (n) %	Total number (n=597)	Rotapro (n=246)	Rota (n=351)	P-value
Procedural endpoints				
Technical success	(589) 98.7%	(244) 99.2%	(345) 98.3%	0.385
Procedural success	(568) 93.8%	(237) 95.5%	(331) 92.6%	0.318
Procedural time (min)	88	82.5	96	0.0003
Fluoroscopy time (min)	34	30	38	0.0001
Constrast volume used (mL)	250	210	290	0.0001
Dose area product (cGy*cm ²)	8011	6129.5	9827	0.0001
Major complications				
Perforation requiring pericardiocentesis	(8) 1.3%	(2) 0.8%	(6) 1.7%	0.348
Vascular access complication	(13) 2.1%	(8) 3.45%	(5) 1.46%	0.206

- ROTAPRO showed significant lower procedural & fluoroscopy times as well as contrast volume use compared to conventional rotablator.
- ROTAPRO and Rota both demonstrated high rates of technical & procedural success, with numerically higher success for ROTAPRO.

The ROTAPRO Study: Key take-aways

Compared to conventional Rota, ROTAPRO showed:

- Similar in-hospital MACCE, including in-hospital all-cause death, peri-procedural MI, TVR and stroke.
- > Similar procedural success rates and major complication.
- > Lower procedural time, radiation exposure and contrast use
- This study demonstrated safety and efficacy of using the new ROTAPRO system for rotational atherectomy.

Summary

