

IVUS-Guided vs. Angiography-Guided CTO-PCI

Gerald S. Werner MD PhD, FESC, FACC, FSCAI Klinikum Darmstadt GmbH Darmstadt, Germany

Conflict of interest

- I, Gerald S. Werner, MD, have received speaker fees from
 - Abbott Vascular
 - ASAHI Intecc
 - Daichi Sankyo
 - Orbus-Neich
 - Philips-Volcano
 - Siemens
 - Terumo

The Essential Role of IVUS in CTO-PCI

- IVUS in the antegrade approach
 - Identify the proximal cap
 - Verify true lumen entry
 - Try to guide reentry into true lumen
 - Verify true lumen position after reentry
- IVUS in the retrograde approach
 - Identify issues with hampered retrograde wire
 - IVUS guided reverse CART
 - Mandatory when approaching left main
- IVUS to optimize stenting in diffusely diseased CTOs
 - What is the true vessel size
 - How extensive should we cover the vessel by stents
 - Can we leave a bifurcation or should we treat it

The Essential Role of IVUS in CTO-PCI

- IVUS in the antegrade approach
 - Identify the proximal cap
 - Verify true lumen entry
 - Try to guide reentry into true lumen
 - Verify true lumen position after reentry
- IVUS in the retrograde approach
 - Identify issues with hampered retrograde wire
 - IVUS guided reverse CART
 - Mandatory when approaching left main
- IVUS to optimize stenting in diffusely diseased CTOs
 - What is the true vessel size
 - How extensive should we cover the vessel by stents
 - Can we leave a bifurcation or should we treat it

Registries in complex PCI indicate IVUS benefit

Patients Undergoing Complex Procedures

Ki Hong Choi, MD, ^a Young Bin Song, MD, P+D, ^a Joo Myung Lee, MD, MPH, P+D, ^a Sang Yoon Lee, MD, ^a Taek Kyu Park, MD, P+D, ^a Jeong Hoon Yang, MD, P+D, ^{a,b} Jin+Ho Choi, MD, P+D, ^{a,c} Seung-Hyuk Choi, MD, P+D, ^a Hyeon-Cheol Gwon, MD, P+D, ^a Joo-Yong Hahn, MD, P+D^a

📕 Intravascular Ultrasound-Guided PCI 📕 Angiography-Guided PCI

Clinical Outcomes

All Lesion -	0.573 (0.460-0.714)			
Bifurcation Lesion -	0.682 (0.498-0.934)			
Chronic Total Occlusion Lesion	0.670 (0.408-1.102)			
Left Main Disease —	0.203 (0.126-0.329)			
Long Lesion 🗕	0.602 (0.450-0.804)			
Multi-Vessel PCI	0.639 (0.473-0.864)			
Multiple Stents Implantation	0.532 (0.332-0.855)			
In-Stent Restenosis Lesion	0.837 (0.403-1.740)			
Calcified Lesion	0.458 (0.052-4.012)			
0.01 0.1 1	10			
Favors Intravascular Ultrasound	Favors Angiography			

EURO CTO CLUB

Choi, K.H. et al. J Am Coll Cardiol Intv. 2019;12(7):607-20.

...but only weak clinical evidence for the use of IVUS in CTO

- 402 patients with CTOs were randomised (1:1):¹
 - -To IVUS-guided or angiography-guided PCI
 - To Resolute zotarolimus-eluting or Nobori biolimus-eluting stents
- At 12 months, compared with angiography, IVUS patients :
 - Had significantly lower rates of MACE (2.6% vs 7.1%; hazard ratio 0.35; 95% CI [0.13–0.97]; P=0.035);
 - Were more likely to receive high-pressure dilatation after stenting with a higher maximum balloon pressure
 - -Had larger MLD after stenting

Cumulative event rate analysis using the Kaplan–Meier method; IVUS-guided versus angiography-guided PCI of patients with CTO – a randomised study¹

1. Kim BK, et al. Circ Cardiovasc Interv 2015;8:e002592.

Journal of Clinical Medicine

Systematic Review

Clinical and Procedural Outcomes of IVUS-Guided vs. Angiography-Guided CTO-PCI: A Systematic Review and Meta-Analysis

Giuseppe Panuccio ^{1,2,*}, Youssef S. Abdelwahed ^{2,3}, Nicole Carabetta ¹, Nadia Salerno ⁴, David Manuel Leistner ^{5,6}, Ulf Landmesser ^{2,3,7}, Salvatore De Rosa ^{1,*}, Daniele Torella ⁴ and Gerald S. Werner ⁸

Study name		Statistics for each study			Events / Total			Risk ratio and 95% CI						
	Risk ratio	Lower limit	Upper limit	Z-Value	p-Value	IVUS-guided	Angiography-guided							
CTO-IVUS	0,357	0,131	0,973	-2,014	0,044	5/201	14 / 201	- T -	+	-	1	ſ	1	1
AIR-CTO	0,862	0,540	1,377	-0,621	0,534	25/115	29 / 115			-	-	8		
К-СТО	0,818	0,453	1,478	-0,665	0,506	18 / 201	22 / 201				-			
Progress-CTO	1,110	0,846	1,455	0,753	0,452	70 / 344	106 / 578							
Kalogeropulos et al	0,862	0,526	1,413	-0,589	0,556	25 / 182	29 / 182							
Overall	0,899	0,699	1,156	-0,832	0,405	143/1043	200/1277				•			
								0,1	0,2	0,5	1	2	5	10

Favours IVUS Favor

Favours Angiography

Differences in IVUS utilization around the globe

EuroIntervention 2024;20:e185-e197 published online e-edition February 2024 DOI: 10.4244/EIJ-D-23-00490

ORIGINAL RESEARCH

Contemporary outcomes of chronic total occlusion percutaneous coronary intervention in Europe: the ERCTO registry

Table 3. Procedural characteristics.

	Overa li N=8,673	Antegrade N=6,282 (73)	Retrograde N=2,391 (27)	<i>p</i> -value		
Technical success	7,727 (89.1)	5,832 (92.8)	1,895 (79 . 3)	<0.001		
Intravascular lithotripsy	95 (1.1)	66 (1.1)	29 (1.2)	0.100		
JACC: CARDIOVASCULAR IMAGING VOL. 14, NO. 10, 2021						

© 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

ORIGINAL RESEARCH

Effect of Coronary CTA on Chronic Total Occlusion Percutaneous Coronary Intervention

A Randomized Trial

TABLE 2 Procedural Characteristics and Immediate Procedural Outcomes

	Coronary CTA Guidance (n = 200)	Angiography Guidance (n = 200)	p Value
Use of intravascular ultrasound	118 (59)	105 (53)	0.191

Circulation: Cardiovascular Interventions

ORIGINAL ARTICLE

In-Hospital Outcomes of Chronic Total Occlusion Percutaneous Coronary Interventions in Patients With Prior Coronary Artery Bypass Graft Surgery

Insights From an International Multicenter Chronic Total Occlusion Registry Table 3. Techniques Used for CTO PCI in the Study Patients

		Prior Coronary Ar Surg		
Variables	Overall (3486)	Yes (n=1121)	No (n=2365)	P Value
IVUS use	39.8%	42.7%	38,5%	0.052

- IVUS utilization varies around the globe
- Main reason in Europe for low use: lack of reimbursement
- My personal use: 70% in 2023

Practical use of IVUS in CTO interventions: IVUS to optimise stent selection in CTOs

- After opening a CTO, IVUS represents a useful tool to provide information about lesion length, morphology and identification of a landing zone for stent implantation
- After stenting, expansion, apposition and extension can be optimised with IVUS assessment

The Essential Role of IVUS in CTO-PCI

- IVUS in the antegrade approach
 - Identify the proximal cap
 - Verify true lumen entry
 - Try to guide reentry into true lumen
 - Verify true lumen position after reentry
- IVUS in the retrograde approach
 - Identify issues with hampered retrograde wire
 - IVUS guided reverse CART
 - Mandatory when approaching left main
- IVUS to optimize stenting in diffusely diseased CTOs
 - What is the true vessel size
 - How extensive should we cover the vessel by stents
 - Can we leave a bifurcation or should we treat it

Practical use of IVUS in CTO interventions: IVUS in antegrade approach

Practical use of IVUS in CTO interventions: IVUS in antegrade approach

The Essential Role of IVUS in CTO-PCI

- IVUS in the antegrade approach
 - Identify the proximal cap
 - Verify true lumen entry
 - Try to guide reentry into true lumen
 - Verify true lumen position after reentry
- IVUS in the retrograde approach
 - Identify issues with hampered retrograde wire
 - IVUS guided reverse CART
 - Mandatory when approaching left main
- IVUS to optimize stenting in diffusely diseased CTOs
 - What is the true vessel size
 - How extensive should we cover the vessel by stents
 - Can we leave a bifurcation or should we treat it

From: Fundamental Wire Technique and Current Standard Strategy of Percutaneous Intervention for Chronic Total Occlusion With Histopathological Insights

J Am Coll Cardiol Intv. 2011;4(9):941-951. doi:10.1016/j.jcin.2011.06.011

Figure Legend:

Principle of Retrograde Subintimal Tracking

Antegrade subintimal tracking (dotted line) and retrograde subintimal tracking (solid line). Even though the angiogram shows that the 2 wires are separated (antegrade and retrograde), both wires can be positioned in the same subintimal space. After the retrograde wire comes into the same lumen with the antegrade wire, crossing into the proximal true lumen with the retrograde wire.

Date of download: 1/18/2014 is highly promising. Copyright © The American College of Cardiology. All rights reserved.

The principal problem of connecting wires

From: Fundamental Wire Technique and Current Standard Strategy of Percutaneous Intervention for Chronic Total Occlusion With Histopathological Insights

J Am Coll Cardiol Intv. 2011;4(9):941-951. doi:10.1016/j.jcin.2011.06.011

- How we fail in connecting the wires
 - No wire overlap
 - Balloon cannot be advanced
 - Despite ballooning, not connecting

Copyright © The American College of Cardiology

All rights reserved

The principle problem of connecting wires

From: Fundamental Wire Technique and Current Standard Strategy of Percutaneous Intervention for Chronic Total Occlusion With Histopathological Insights

J Am Coll Cardiol Intv. 2011;4(9):941-951. doi:10.1016/j.jcin.2011.06.011

- How we fail in connecting the wires
 - No wire overlap
 - Balloon cannot be advanced
 - Despite ballooning, not connecting
- Causes of failure
 - Calcifications
 - Angulations
 - Huge subintimal space
 - Undersizing of the balloon *)

The principle problem of connecting wires

From: Fundamental Wire Technique and Current Standard Strategy of Percutaneous Intervention for Chronic Total Occlusion With Histopathological Insights

J Am Coll Cardiol Intv. 2011;4(9):941-951. doi:10.1016/j.jcin.2011.06.011

- How we fail in connecting the wires
 - No wire overlap
 - Balloon cannot be advanced
 - Despite ballooning, not connecting
- Solutions
 - IVUS for understanding the problem
 - MSCT to understand the anatomy
 - Assisting with a Guideliner
 - Knuckle wire to overcome angulations

Practical use of IVUS in CTO interventions: IVUS in retrograde approach – reverse CART

How and when to perform IVUS in the retrograde approach

RCA CTO in a 77 year old man

Bring wires in parallel position

Overlap of the wires and connect by balloon inflation

When wire progress stops, be aware of subintimal wire position CLUB

The principal problem of connecting wires

J Am Coll Cardiol Intv. 2011;4(9):941-951. doi:10.1016/j.jcin.2011.06.011

Achieve a connection between antegrade and retrograde wire **inside** the plaque

Reposition your wire to achieve a connection **inside** the plaque

How do we connect the wires?

Copyright © The American College of Cardiology.

All rights reserved.

Repositioning of the entry zone distal into the lesion

The goal of the retrograde approach: externalization

Provides complete control of the guide e.g. ostial stent placement

EURO **CTO** CLUB

Final result

Extremely high rate of subintimal tracking with US-strategy

FIGURE 4 Guidewire Tracking Pattern Compared With Angiography-Defined Successful Approach and Difficulty Grades

Song L, Maehara A et al. JACC Int 2017; 10:1011

An example demonstrating RDR vs. anatomic approach

So we could do extensive CART, or antegrade rewiring

Change of position of reverse CART -> complete intimal passage and restored anatomy

The anatomical approach: Even with the retrograde approach the subintimal pathway is infrequent

- There is no RCT evidence for a long-term benefit of IVUS vs Angio-guided CTO PCI
- It should be possible to randomize a large number of patients to evaluate the clinical impact
- But IVUS is anyway an essential technical tool for achieving successful CTO PCI in complex antegrade and retrograde strategies
- IVUS is superior to angiography in long complex lesions, in many of these contrast injection should be avoided