# Case 4: Evaluation of IVL – Fractures by Histology, OCT and Micro-CT

## Ziad A Ali MD DPhil

#### St Francis Hospital & Heart Center Cardiovascular Research Foundation, New York, USA zali@crf.org Follow me @ziadalinyc





#### **Disclosure Statement of Financial Interest**

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

| Affiliation/Financial Relationship             | Company                                                                                                                   |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Grant/Research Support ( <u>Institutional)</u> | NIH/NHLBI, Abbott, Philips, Boston Scientific,<br>Abiomed, Opsens, Acist Medical, Medtronic<br>Cardiovascular Systems Inc |
| Consulting Fees/Honoraria                      | Amgen, Astra Zeneca, Boston Scientific                                                                                    |
| Equity                                         | Shockwave Medical                                                                                                         |





## CASE PRESENTATION \_\_\_\_

 Age (years):
 70

 Gender:
 F

 BMI (kg/m²):
 30.39

#### **Clinical Presentation**

- Patient presents with exertional dyspnea and CP with moderate intensity activities
- 1/2022 CVA

-~~-

 Revealed PAD - PTA of brachiocephalic trunk

#### **Cardiac History**

| revious valve disease:    | No                               |
|---------------------------|----------------------------------|
| revious coronary disease: | Yes                              |
| HF:                       | Yes                              |
| trial fibrillation:       | Paroxysmal on OAC                |
| acemaker:                 | No – Loop recorder for AF burden |
| revious CV surgery:       | NA                               |
| Other CV intervention:    | Prior PCI (PTCA): OM1            |
| )ther:                    | Pulmonary Hypertension           |

#### **Co-morbidities**

| Renal function (Cr: mg/dL, GFR): | Cr: 1.1mg/dL, GFR = 55 |
|----------------------------------|------------------------|
| Chronic lung disease:            | Yes                    |
| Prior stroke/TIA:                | Yes                    |
| Diabetes type II:                | Yes                    |
| Hypertension:                    | Yes                    |





# ANGIOGRAM











# **Guide Extension Assisted IVL Delivery**



**SCB + Guide Extension Tracking** 





# **IVL Balloon Unsheathing and Activation**









# **Pulse Management**











## **Ca+ Fractures**









# **Post IVL**



DES crosses without guide extension support





Full NC expansion















# **Final Expansion**



# **IVL Impact**









## **Intravascular Lithotripsy**

• Acoustic pressure waves fracture calcium



Acoustic pressure waves travel through tissue with an effective pressure of ~50 atm and fractures both superficial and deep calcium





### **Morphology Guided Lesion Preparation**



WWW.OPCI.LIV

### Influence of Ca<sup>2+</sup> on stent Expansion by OCT

| OCT-based Calcium Volume Index Score |                       |        |  |
|--------------------------------------|-----------------------|--------|--|
|                                      | ≤ 90 ° → 0            | point  |  |
| 1. Maximum Calcium Angle(゜)          | 90° < Angle ≤180° ⇒ 1 | point  |  |
|                                      | > 180 ° 🛛 🔿 2         | points |  |
| 2. Maximum Calcium Thickness<br>(mm) | ≤ 0.5 mm 🛛 ⇒ 0        | point  |  |
|                                      | > 0.5 mm → 1          | point  |  |
| 3. Calcium Length (mm)               | ≤ 5.0 mm 🛛 ⇒ 0        | point  |  |
|                                      | > 5.0 mm → 1          | point  |  |
| Total score                          | 0 to 4 points         |        |  |

Rule of 5's

- 0.5mm thickness
- 5mm long
- 50% vessel arc

Consider advanced lesion preparation ≥3





Fujino & Maehara. EuroIntervention. 2018 Apr 6;13(18):e2182-e2189.





# **Mechanism of Action**

**Circumferential Calcium Fracture** 





# **Serial OCT**

|                                     | Pre-IVL<br>N=97            | Post-IVL<br>N=92  | Post-stent<br>N=98 |
|-------------------------------------|----------------------------|-------------------|--------------------|
| At MLA site                         |                            |                   |                    |
| Minimum Lumen area, mm <sup>2</sup> | $2.2 \pm 0.8^{*}$          | $3.6 \pm 1.4^{*}$ | $6.5 \pm 2.0^{*}$  |
| Maximum Area stenosis               | 72 ± 12% <sup>*</sup>      | 56 ± 16%*         | 22 ± 19%*          |
| At Maximum Ca++ site                |                            |                   |                    |
| Maximum calcium angle, °            | $293 \pm 77$               |                   |                    |
| Maximum calcium thickness, mm       | $0.96 \pm 0.25$            |                   |                    |
| Stent expansion                     |                            |                   | 102 ± 29%          |
| At MSA site                         |                            |                   |                    |
| Minimum stent area, mm <sup>2</sup> |                            |                   | 6.5 ± 2.1          |
| Any malapposed strut                |                            |                   | 4.1%               |
| *P<0.01 for all comparisons         | s between pre-IVL, post-IV | /L, post-stent    |                    |
| lic Health                          |                            |                   |                    |

PCI

OPTIMIZING PERCUTANEOUS CAR

WWW.OPCI.LIVE



## **Mechanism of Action**







# **Disrupt CAD: OCT Sub-studies**

#### Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions

#### **First Description**

Ziad A. Ali, MD, DPhil, <sup>a,b</sup> Todd J. Brinton, MD,<sup>c</sup> Jonathan M. Hill, MD,<sup>d</sup> Akiko Maehara, MD,<sup>a,b</sup> Mitsuaki Matsumura, BS,<sup>a,b</sup> Keyvan Karimi Galougahi, MD, PhD,<sup>a</sup> Uday Illindala, MS,<sup>e</sup> Matthias Götberg, MD, PhD,<sup>f</sup> Robert Whitbourn, MD,<sup>g</sup> Nicolas Van Mieghem, MD,<sup>h</sup> Ian T. Meredith, MBBS, PhD,<sup>i</sup> Carlo Di Mario, MD, PhD,<sup>j</sup> Jean Fajadet, MD<sup>k</sup>

Circulation: Cardiovascular Interventions Volume 12, Issue 10, October 2019 https://doi.org/10.1161/CIRCINTERVENTIONS.119.008434



#### CORONARY INTERVENTIONS

Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses

The Disrupt CAD II Study

Ziad A. Ali, MD, DPhil, Holger Nef, MD, PhD, Javier Escaned, MD, PhD, Nikos Werner, MD, PhD, Adrian P. Banning, MD, Jonathan M. Hill, MD, Bernard De Bruyne, MD, PhD, Matteo Montorfano, MD, Thierry Lefevre, MD, Gregg W. Stone, MD, Aaron Crowley, MA, Mitsuaki Matsumura, BS, Akiko Maehara, MD, Alexandra J. Lansky, MD, Jean Fajadet, MD, and Carlo Di Mario, MD, PhD



Ali et al. iJACC. 2017 Ali et al. Circ Cardiovasc Interv. 2019

DISRUPT CAD : OCT demonstrated multiple circumferential calcium fractures and excellent stent expansion





# **Visible Calcium Fracture by OCT**

Disrupt CAD I-IV pooled OCT sub-study patient-level analysis (N = 245)



Optical coherence tomography characterization of Shockwave intravascular lithotripsy for treatment of calcified coronary lesions: Patient-level pooled analysis of the Disrupt CAD OCT sub-studies. Z. Ali, TCT 2021





# **Outcomes by Fracture Characteristics**





# **Pre-IVL**







Kereiakes and Ali et al. JACC Interv. 2021 28;14(12):1275-1292



OCT

Ċ

Micro-(





#### Study design and methods

#### Objective: Compare the sensitivity of OCT, micro-CT, and histology for calcium fracture detection



- OCT and micro-CT imaging performed before and after treatment with IVL or POBA only (no stent placement).
- Presence and characterization of calcium fracture assessed with OCT and micro-CT; compared against co-registered histological sections.

Catholic Health

St. Francis Hospital & Heart Center®



Coronary arteries were dissected free from each heart

Perivascular cuff placement for immobilization and application of back pressure to simulate *in situ* environment



#### Lesion characteristics

|                   | IVL<br>(N = 8 lesions) | POBA<br>(N = 7 lesions) | P-value |
|-------------------|------------------------|-------------------------|---------|
| Target vessel     |                        | ·                       |         |
| LAD               | 6 (75.0)               | 5 (71.4)                |         |
| LCX               | 1 (12.5)               | 2 (28.6)                | 0.51    |
| RCA               | 1 (12.5)               | 0 (0.0)                 |         |
| Location          |                        |                         |         |
| Proximal          | 6 (75.0)               | 6 (85.7)                |         |
| Mid               | 1 (12.5)               | 1 (14.3)                | 0.63    |
| Distal            | 1 (12.5)               | 0 (0.0)                 |         |
| DS, %             | 57.8 (46-59.1)         | 50.7 (46.7-55.3)        | 0.56    |
| Max arc, degree   | 145.2 (83.4-270.6)     | 121.0 (91.3-123.9)      | 0.31    |
| Min thickness, mm | 0.5 (0.4-0.6)          | 0.6 (0.6-1.0)           | 0.19    |
| Max thickness, mm | 1.1 (1.1-1.3)          | 1.1 (1.1-1.6)           | 0.46    |



#### IVL and POBA treatment of calcified lesions

Pre-treatment angiography and x-ray visualization

#### Fracture visualization:

- POBA: 0 fractures
- IVL: 14 fractures

3D micro-CT: longitudinal and transverse calcium fracture following IVL treatment





#### Calcium fracture visualization

Co-registered pre- and post-treatment cross-sections of micro-CT, OCT, and histology in POBA and IVL groups

**Catholic Health** 

St. Francis Hospital & Heart Center®





#### OCT Imaging May Underestimate Calcium Fracture Depth





#### Calcium Fracture Visualization Following IVL Treatment



- 14 fractures visualized by histology
- Micro-CT detected 93% of fractures
- OCT detected 57% of fractures

Catholic Health

St. Francis Hospital & Heart Center®

OCT may underestimate the presence of calcium fracture





#### OCT Imaging May Underestimate Calcium Fracture Depth





#### Conclusions

- This *ex-vivo* study represents the first histological examination and comparison of OCT and micro-CT imaging modalities to evaluate calcium fracture following IVL treatment.
- IVL treatment demonstrated histologically more calcium fracture compared to POBA treatment.
- OCT may underestimate the **presence of calcium fracture** and calcium **fracture depth** compared to micro-CT.



