

"Rotatripsy" Risk and Rewards:

Findings From A Real-World Registry Of Patients Undergoing Combined Rotational Atherectomy And Intravascular Lithotripsy

> Dr Paul Tern, MB BChir, MRCP (UK) National Heart Centre Singapore, Singapore

Disclosure

• I have no conflicts of interest

Introduction

- Coronary artery calcification is associated with incomplete revascularization and increased risk for major adverse clinical events (MACE)
- Severely calcified lesions may require combination therapy to achieve sufficient lesion preparation
 - "RotaTripsy" combines rotational atherectomy and intravascular lithotripsy

1. Bourantas CV et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. *Heart*. 2014;100:1158–1164.

2. Kobayashi Y et al. Impact of target lesion coronary calcification on stent expansion. Circ J. 2014;78:2209–2214.

3. Mori S et al. Significant association of coronary artery calcification in stent delivery route with restenosis after sirolimus-eluting stent implantation. Circ J. 2009;73:1856– 1863.

^{29*} TCTAP2024

Rotational Atherectomy + Intravascular Lithotripsy

- These are **complementary** techniques
- They work by **different** methods
- There is theoretical benefit in combining both RA and IVL

Questions

- Large trials have only focused on one calcium modification modality at a time
 - ROTAXUS, PREPARE-CALC, DISRUPT CAD III
- Published data and outcomes thus far on patients treated with "RotaTripsy" are confined to small case series
- Previous trials excluded patients who would commonly be candidates for "Rotatripsy" – e.g. acute coronary syndrome, acute heart failure, left main disease, dialysis-dependent patients

How does a RA + IVL strategy fare in a "real world" cohort?

Methods

- Single-centre, registry based, retrospective study
 - May 2020 Dec 2022
- IVL indications: severe calcification as defined as ≥ 270-degree arc on intravascular imaging, or angiographic evidence (drawing from DISRUPT III and ORBIT II definitions)
- RA indications: as deemed suitable by primary operator
- Use of intravascular imaging not mandatory
- Shockwave IVL catheter (Shockwave C2; Shockwave Medical) and Rotablator
- (Boston Scientific, Marlborough, MA, USA)

TCTAP2024

Outcome Measures

Primary Outcome: 30-day MACE

• All-cause mortality, myocardial infarction, target vessel revascularisation, stroke

Secondary Outcomes:

- Procedural success: successful stent delivery + <30% residual angiographic stenosis + no inhospital MACE (as per DISRUPT-CAD III)
- In-stent thrombosis
- Intraprocedural perforation
- Slow / no-reflow

Patient Characteristics

	N = 57		N = 57	
Age (years)	72 (63,80)	Acute Coronary Syndrome (ACS)	23 (40%) 5 (8.8%)	
Sex	19 (33%)	Unstable Angina Non-ST elevation ACS ST elevation ACS		
BMI (Missing)	23.2 (21.6,27.7) (1)		15 (26%) 3 (5.3%)	4
(Acute Heart Failure	7 (12%)	
Diabetes Mellitus	41 (72%)	Unprotected LMCA Disease / LMCA Equivalent	20 (35%)	
Hypertension	51 (89%)			
Dyslipidemia	48 (84%)	LV Ejection Fraction (%)	43 (33, 55)	
Current Smoker	13 (23%)	(Missing)	(6)	
Prior MI	20 (35%)	Estimated Glomerular Filtration Rate	61 (37, 77)	
Prior PCI	33 (58%)	Vessel Involvement		
Current Dialvsis	10 (18%)	Single	3 (5.3%)	
		Double	11 (19%)	
Prior CABG	3 (5.3%)	Triple	43 (75%)	
Prior Stroke or TIA	7 (12%)	In-Stent Restenosis	14 (25%)	
Peripheral Arterial Disease	4 (7.0%)	(Missing)	(1)	

TCTAP2024

Procedural Details

	N = 57
Fluoroscopy time (minutes)	39 (29, 56)
(Missing)	(3)
Total Contrast (ml)	196 (155, 250)
(Missing)	(1)
Procedural Success	51 (89.5%)
Use of IVUS	29(51%)
Use of OCT	2 (3.5%)
Use of Cutting/Scoring Balloon	40 (70%)
1	32 (56%)
Number of IVL Balloons Used 2	16 (28%)
3	9 (16%)
1	35 (61%)
Number of RA Burrs Used 2	16 (28%)
3	3 (5.3%)
4	2 (3.5%)
5	1 (1.8%)
IVL Used Before RA	3 (5.3%)
IVL Used as Bailout Strategy	38 (67%)
IABP Deployed During Procedure	9 (16%)

Outcomes Comparison

	Our Cohort	DISRUPT CAD III ³ (IVL only)	ROTAXUS ¹⁷ (RA only)	PREPARE-CALC ¹⁸ (RA only)
Total N	N=57	N=431	N=120	N=100
Perforation	0 (0%)	0.3%	1.7%	2%
Slow/No-reflow	6 (10.5%)	0%	0%	0%
In-hospital MACE *	6 (10.5%)	7%	4.2%	N.A.
In-hospital MI	3 (5.3%)	6.8%	1.7%	1%
In-hospital TVR	0 (0%)	0.5%	0.8%	0%
In-hospital mortality	3 (5.3%)	0.3%	1.7%	0%
In-hospital stroke	3 (5.3%)	N.A.	N.A.	N.A.
In-hospital stent thrombosis	0 (0%)	N.A.	0%	0%
30-day MACE *	7 (12.3%)	7.8%	N.A.	N.A.
30-day MI	3 (5.3%)	7.35	N.A.	N.A.
30-day TVR	1 (1.8%)	1.6%	N.A.	N.A.
30-day mortality	4 (7.0%)	0.5%	N.A.	N.A.
30-day stroke	3 (5.3%)	0%	N.A.	N.A.
30-day stent thrombosis	0 (0%)	0.8%	N.A.	N.A.

Discussion Points

Higher mortality and MACE in our cohort than in the RA-only or IVL-only cohorts

- Patients with heavily calcified coronaries tend to have complex disease
- Real-world cohort with sicker patients vs selected trial cohort

Intra-procedural slow / no-reflow (11%) and procedure-related cerebrovascular events (5.3%) are important complications to note

- Regression analysis suggests in-hospital MACE is **significantly associated** with a) increased number of burrs and b) female sex
- Able to achieve procedural success in 89.5% as defined angiographically

Limitations

- Single-centre study
 - Non-randomized, retrospective data
- Study period coincided with initial local experience, where operators **may** have been gaining experience with the techniques
- Small sample sizes and differences in baseline population limits comparison with other registries
- Intravascular imaging only used in half of the patients

Conclusion

- "RotaTripsy" is an effective strategy, even in a real-world cohort
- Patients who require complex calcium modification strategies are generally sick and may suffer from high complication rates
- Stroke and slow / no-reflow are important complications
- More data needed can we do better?

