Hybrid Procedure for HLHS

Teiji Akagi, Shinichi Otsuki, Shunji Sano
Okayama University Hospital,
Okayama, Japan

Hypoplastic Left Heart Syndrome

Pulmonary Artery

Atrial Morphology

- A) Large left atrium, thick prominent septum secondum with thin septum primum adherent
- B) Small left atrium with thick, muscular atrial septum
- C) Giant left atrium, thin atrial septum with severe mitral regurgitation

Atrial Morphology and Pulmonary Vascular Histopathology

	Type A	Type B	
Arteries	Muscular extension into intra-acinar arteries	Muscular extension into intra- acinar arteries	
Veins	Normal	Thick and dilated with arterialized, >2 elastic laminae	
Lymphatics	Normal or mildly dilated	Severely dilated	

Rychik J, et al. JACC 1999

Atrial Morphology

Type A: n=12 Survive: 6

Type B: n=4 Survive: 0

Type C: n=2 Survive: 0

HLHS with Restrictive Atrial Septum

Stage I Palliation

RV-PA Shunt to HLHS

The "Sano" modification

- ◆ Initially reported ↑ survival from 53% to 89% Sano, et al, JTCVS, Vol 126: 504-, 2003
- ◆ Recent multi-institutional report from Japan
 84% survival after Sano, but 1 year survival was
 65% & 2 year 63%

Sano, et al, ATS, Vol 78: 1951-, 2004

♦ More recent report 92% survival after Sano, and 5 year survival was 73%

Sano, et al, ATS, Vol 87: 178-, 2009

Risk Factor after Repair of HLHS

- Mortality after Stage I Palliation using RV-PA Shunt is 7-8% in our institution and more than 90% of the patients with HLHS reached Stage II BDG
- No risk factor after Stage I (RV-PA Shunt)
- Risk factor in mid-long term result
 Intact atrial septum/ restrictve ASD,
 BW less than 2.5kg
 Associated with Non-Cardiac Anomalies

Difficulties of catheter intervention for restrictive ASD

- Critical condition
- Thick muscular atrial septum
- Small left atrium
- Limited echo window (space)
- Limited vascular access
- Less efficacy if conventional technique

Recent Treatment Strategy to HLHS

(2005.8~2008.8)

HLHS (71cases)

Shock, IAS or rAS low body weight (+α)

m-Norwood (62 cases)

Bil PAB (9 cases)

Shock, low body weight (+α)

PAB alone (5 cases)

IAS or rAS

Hybrid approach (4 cases)

Demographic Data

Case	BW	Diagnosis	ASD	Fetal Diag.	Time to op. (hrs)
1	2700g	HLHS/IAS	-	-	23
2	2660g	HLHS/IAS	-	+	0
3	1650g	HLHS/rAS	2.6m/s (L→R)	-	4 d
4	2470g	HLHS/IAS	-	+	0

Hybrid approach: Post Op Course

Case	PAB size(mm)	Baloon size(mm)	Post op ASD	re-BAS
1	3.5	7	2.9mm, 1.2m/s	× 2
2	3.0	10	2.3mm, 2.0m/s	stent
3	2.8	7	3.8mm, 0.9m/s	failure
4	3.0	7	2.4mm, 1.3m/s	×1

Result of Hybrid Approach

Case	Age (m)	ASD	TR	Post-op ECMO	Outcome
1	3	3.5mm, 1.5m/s	trivial	+ PH desaturation	HD due to PH
2	1	8.0mm, 1.3m/s	trivial	-	BDG
3	1	2.7mm, 1.9m/s	trivial	+ LOS	HD Due to PR
4	2	2.7mm, 2.0m/s	moderate	-	BDG

Conclusions

- Transcatheter decompression of the LA for patients with HLHS is still challenging procedure. However, procedure can be performed safely, reduces the transatrial gradient, and improves oxygenation.
- Catheter intervention can contribute survival of this condition compared to conventional emergent Norwood procedure.

Current Status of Survivors

Okayama Experience - Patients

Okayama University Hospital

- February 1998 June 2007
- 62 infants (36 boys & 26 girls)
- Age : 3 57 days (median, 9 days)

>14 days: 11 infants

Weight: 1.6 – 3.9 kg (median, 2.7 kg)

7 infants < 2.0 kg

18 infants < 2.5 kg

Prematurity <37w : 4 infants

exclude Bilateral PAB: 7 infants

Radiofrequency-Assisted Atrial Septoplasty

Du Marchie Sarvaas et al. CCI 2002

Radiofrequency perforation and Cutting balloon septoplasty

Umbilical vein approach

Javois et al. CCI 2005

Transhepatic approach

Pedra et al. CCI 2007

Role of catheter intervention for HLHS

Current Surgical Outcome

Role of catheter intervention for HLHS

Creation of ASD in Utero

Marshall AC, et al. Circulation 2004

Background

- Historically, surgeons and interventionalists have had a somewhat competitive relationship, especially in adult cardiac disease
- Each have been thinking of how to treat patients by their own speciality
- The management of CHD is evolving due to advances in transcatheter therapies that coincide with surgical strategies to improve outcomes

Hybrid Approach – What is it?

- Collaborative effort between surgeons and interventional cardiologists
- Collaborative effort between physicians and industry
- Sharing of ideas, expertise, equipment, & techniques
- Development of novel treatment strategies

Why?

- Offer best treatment to the patients
- Reduce morbidity & mortality
- Improve quality of life
- Deliver more efficient & cost effective care

Hybrid Cardiac Procedures for CHD

- Group I: intraoperative stents
- Group II: perventricular muscular VSD
- Group III: PA bands & PDA stent
- Group IV: young adults requiring combined interventional & EPS
- Group V: unusual Hybrid procedures

Hypoplastic Left Heart Syndrome

¬A Benchmark for the Surgical Treatment of Congenital Heart Disease-

Hybrid Approach to HLHS

So What's The Big Deal?

- Neurologic & Developmental Morbidity
 - After Norwood repair: Full Scale IQ
 - Kern, et al: 91
 - Mahle, et al: 86
 - · Goldberg, et al: 94
 - Abnormalities of speech & language, oral aversion & poor feeding, poor adaptive behavior, & growth failure
 - Later, there is significant emotional & behavior dysfunction, low self esteem, & psychosocial and physical health issues

Wernovsky & Newburger, J Peds, Vol 142: Jan, 2003

Hybrid Approach to HLHS

"Hybrid" Concept Of HLHS Repair

- Less invasive procedures (Bilateral PAB +/-Stent)
- Avoid open heart surgery in Neonate, DHCA
- One comprehensive open heart procedure at an age appropriate for the "big operation"
 - Stage 1 Neo-aortic reconstruction
 - Bidirectional Glenn

Challenge in the management of HLHS

Overall survival rate

one-year survival rate: 80%

Five-year survival rate: 73%

Ductal stent overriding the isthmus at 5 months

Indication of Hybrid Procedure

- HLHS/IAS, HLHS/rAS
- BW< 2.0-2.5 Kg
- Poor preoperative condition
- Shock
- Severe renal failure, liver failure
- Sepsis

New Hybrid Strategy

Okayama University

New Hybrid Procedure

- Bilateral PAB
- ASD creation

Without using CPB

Strategy in the management of HLHS- Recent Era

RV-PA Shunt Bilateral PAB ± Stent

Strategy in the management of HLHS

Recent Era ~ Near Future

Fetal Intervention

- ➤ To create atrial septal defect
- ➤ To decrease PVR
- ➤ To stimulate growth of LV and Aorta