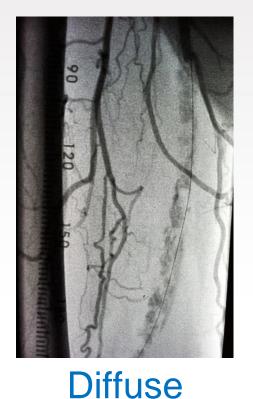
Heavy Calcific Femoral-Popliteal Lesions: Atherectomy and DCB is Standard

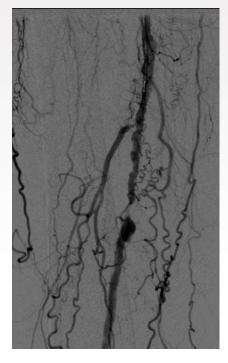
Ravish Sachar MD FACC UNC REX Healthcare Raleigh, NC, USA

Disclosure

Ravish Sachar, MD


I have the following potential conflicts of interest to report:

- Consulting Medtronic, Boston Scientific
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)
- I do not have any potential conflict of interest



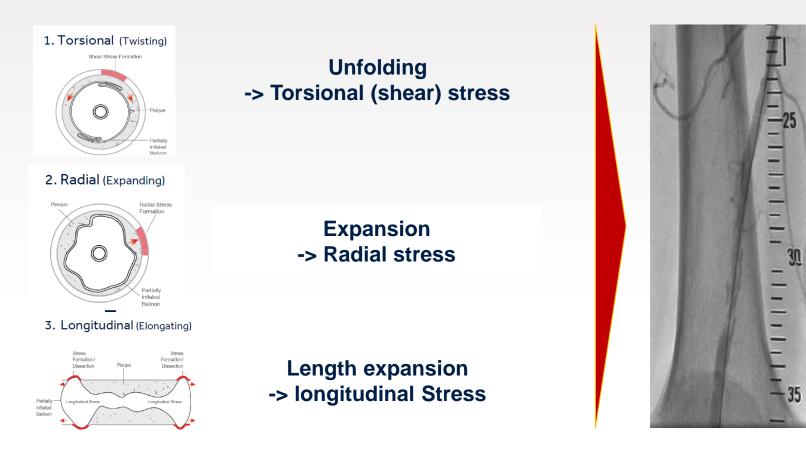
Heavily Calcific Femoral-Popliteal Disease

Eccentric

Achilles Heal of EV Intervention Or is it?

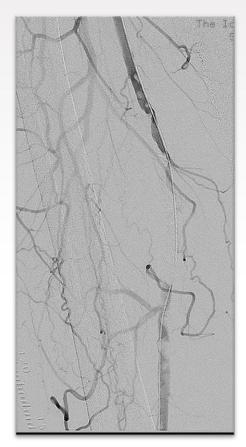
Treatment Options For Fem-Pop Disease :

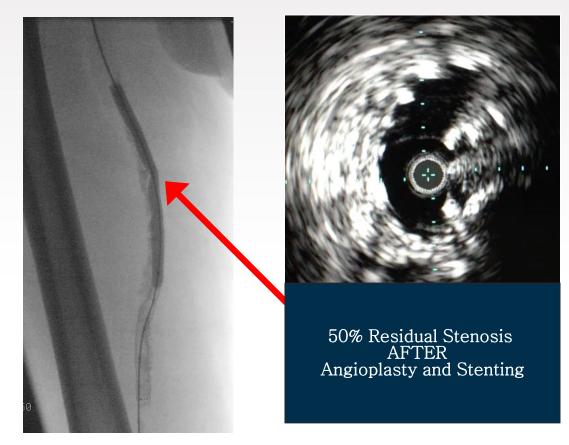
- PTA
- Stent
- Specialty Stents
- Drug Eluting Stents
- Drug Coated Balloons
- Scoring Balloons
- Lithoplasty
- Atherectomy
- Atherectomy + DCB


What Are The Goals of EVT?

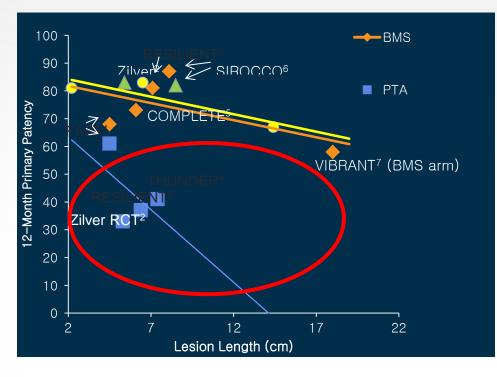
- Acute Outcomes
 - Maximal Luminal Diameter
 - No dissection
 - Minimal Recoil
 - Minimize the use of stents Leave Nothing Behind
- Long term
 - Patency and freedom for TLR for Claudicants
 - Wound Healing for Patients with CLI
 - Maintain Treatment Options

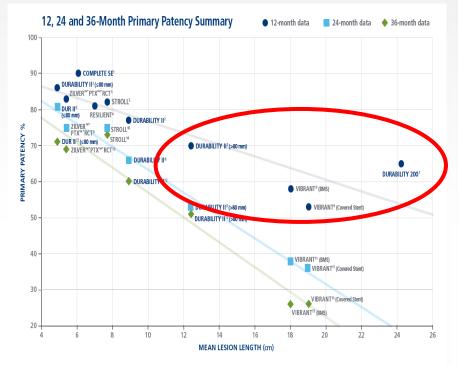
Limitation of POBA




Vessel trauma can manifest as <u>severe dissection</u> and <u>elastic recoil</u>

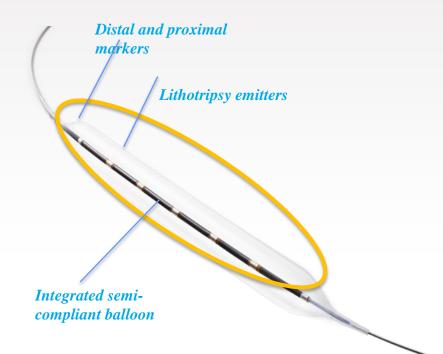
Limitations of Stenting in Severe Calcium

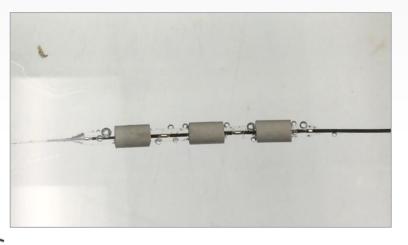




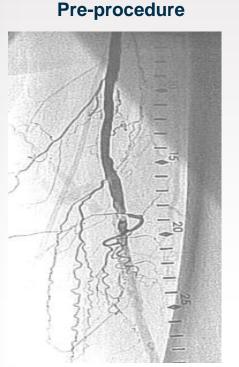
Fem-Pop POBA Patency

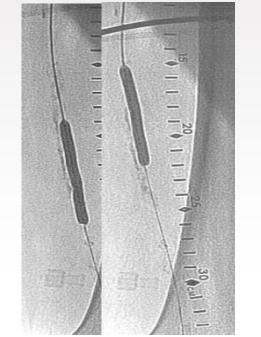
Fem-Pop BMS Patency

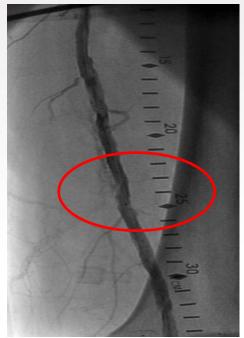



TCTAP2019

Shockwave Peripheral IVL System

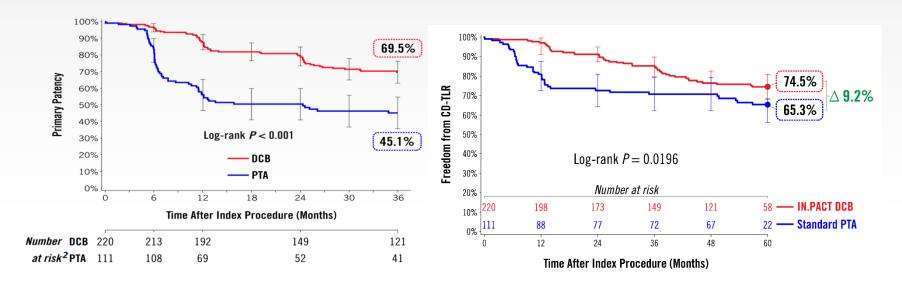

Sonic Pressure waves *crack calcium*, softening vessel compliance. Fractured calcium remains inside the vessel wall.




Lithoplasty - Left Mid SFA

Calcification

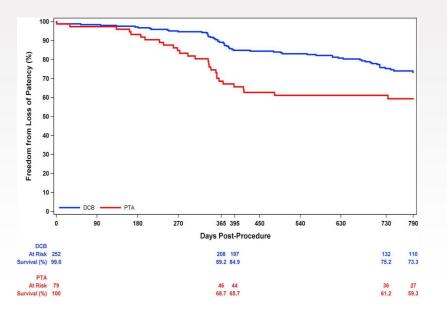
Treatment Balloon


5.3mm RVD 90.1% stenosis 148.0mm length Severe Calcium

5.5 x 60 Lithoplasty 120 pulses

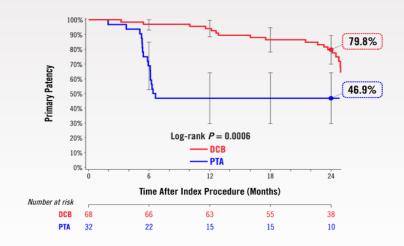
- Appears to Improve Compliance
- No Removal of Plaque
- Calcium Remains in Vessel

DCB: Proven superiority over PTA for Fem-pop Disease

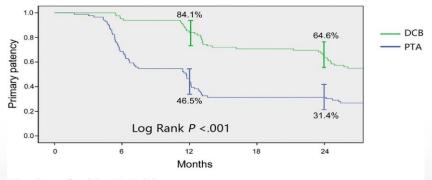


In.Pact Pivotal 3 yr. Patency 5 yr. Freedom from cdTLR

The ILLUMENATE European Randomized Clinical Trial 2-Year Results


Iida et al LINC 2018

Brodmann M et al. ACC: Cardiovascular Interventions. Volume 11, Issue 23, December 2018


Yongle Xu et al. JACC: Cardiovascular Interventions Volume 11, Issue 23, December 2018

TCTAP2019

In. Pact SFA Japan Trial Primary Patency through 2 Years

The AcoArt1 Chinese Randomized Clinical Trial 2-Year Results

Number of subjects at risk

DCB	100	78	69	58	53
РТА	100	59	47	27	27

VRF

Limitations of Randomized Trials of Anti-Restenotic Therapies

- Residual stenosis > 70% after PTA NOT INCLUDED
- Residual dissection after PTA NOT INCLUDED
- Severe Calcification NOT INCLUDED

• IS THERE A HIGHER MORTALITY WITH PACLITACEL???

IN.PACT SFA Trial Independent Predictors of CD-TLR in All ITT Patients Cox Regression Multivariate Analysis¹

Predictors of CD-TLR to 4-Year Multiple Cox Proportional Hazards Regression					
	Hazard Ratio [95%CI]	P-Value			
Gender (Male vs. Female)	0.497 [0.310, 0.797]	0.004			
Lesion length (cm)	1.070 [1.022, 1.120]	0.004			
Severe Calcification	2.412 [1.210, 4.811]	0.012			
Treatment Group (DCB vs. PTA)	0.574 [0.358, 0.920]	0.021			
Previous Ipsilateral Revascularization (SFA/PPA)	1.872 [1.040, 3.371]	0.037			
Inflow Treatment Pre-procedure(core lab-reported)	0.291 [0.089, 0.953]	0.041			
Number of Runoff Vessels Pre-procedure(2/3 vs. 0/1)	1.591 [0.946, 2.675]	0.080			

Calcification is a predictor of CD-TLR

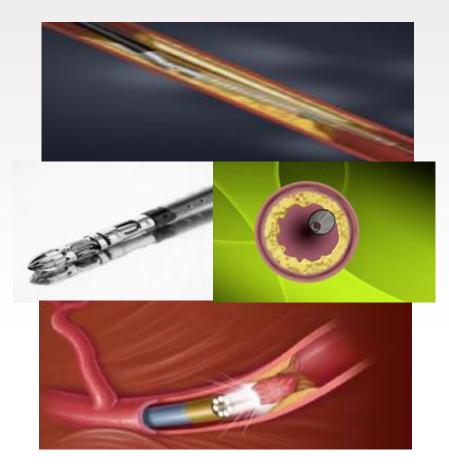
Should We Remove Calcium in Complex Femoral Popliteal Disease?

- Plaques associated with arterial dissections commonly have significant calcium deposits¹
- Presence of calcium necessitates greater balloon pressures^{2,3}
- Calcium might influence drug-coated balloon efficacy⁴

Atherectomy For Vessel Preparation In Heavily Calcific Disease

Vessel prep is improving the local environment of the vessel prior to leaving <u>something</u> behind, whether that <u>something</u> is a stent or an anti-proliferative agent

Vessel Compliance and Lumen Gain Drug Transfer and Uptake


Reduced Risk of Dissection/ Stenting

Atherectomy

- Directional
- Rotational
- Orbital
- Athero-ablative
- Helical

Evidence: Published Atherectomy Trials

Study				Dissection	Patency			
(* Core Lab)	Туре	Patients	Lesions	(≥Grade D)	BO Stent	30-day MAE	1-year	>1-year
*DEFINITIVE LE ¹	DA	598 (RCC 1-3) 201 (RCC 4-6)	743 279	2.2% (13/598) 2.5% (5/201)	3.2% (33/1022)	1.0% (6/598) 3.5% (7/201)	78% 71%	?
*DEFINITIVE CA ²	DA	133	168	NR	4.1% (7/169)	6.9% (9/131)	NR	?
VISION-IDE ³	DA	130	130	NR	4.0%	17.6% (6-mo)	NR	?
OASIS ⁴	OA	124	201	NR	2.5% (5/201)	3.2% (4/124)	NR	?
COMPLIANCE 360 ⁵	OA	25	38	NR	5.3% (2/38)	NR	NR	?
CALCIUM 360 ⁶	OA	25	29	3.5% (1/29)	6.9% (2/29)	0%	NR	?
*PATHWAY PVD ⁷	RA	172	210	9% (15/172)	7% (14/210)	1.0% (2/172)	61.8%	?
*CELLO ⁸	Las	65	65	NR	23.2% (15/65)	0%	54.3%	?
*EXCITE-ISR ⁹	Las	169	169	2.4% (≥Grade C)	4.1% (7/169)	5.8% (9/155)	71.1% (6-mo)	?

1. McKinsey J, et al. JACC Cardiovasc Interv 7(8):923-33:2014.

2. Roberts D, et al. Catheter Cardiovasc Interv 84(2):236-44:2014.

3. Schwindt A. Presented at VIVA, Las Vegas 2015.

4. Safian RD, et al. Catheter Cardiovasc Interv 73(3):406-12:2009

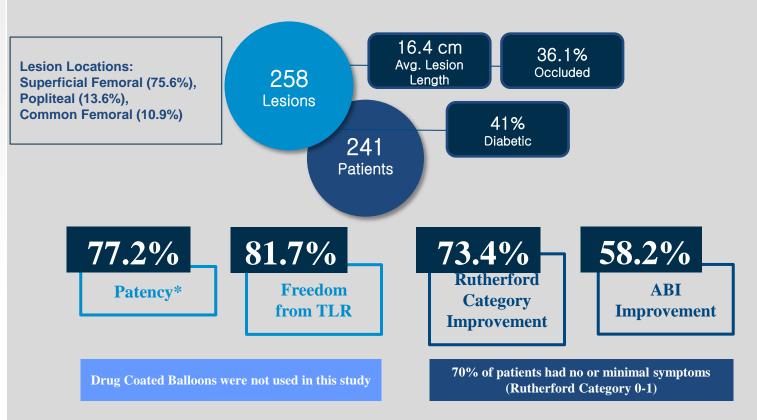
5. Dattilo R, et al. J Invasive Cardiol 26(8):355-60:2014.

6. Shammas NW, et al. J Endovasc Ther 19(4):480-8:2012.

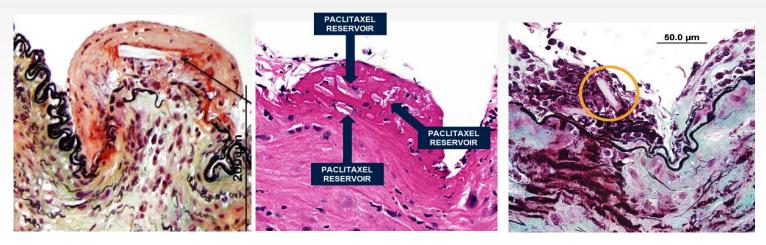
7. Zeller T, et al. J Endovasc Ther 16(6):653-62:2009.


8. Dave R, et al. J Endovasc Ther 16(6):665-75:2009.

9. Dippel EJ, et al. JACC Cardiovasc Interv 8(1 Pt. A):92-101:2015.


DEFINITIVE LE

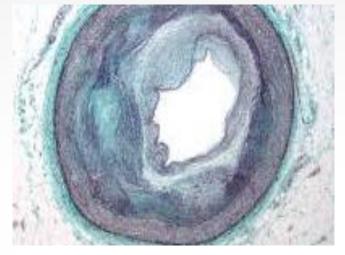
Jet Registry: 12 Month Efficacy and Outcomes


Post-Procedure: 98.3% of patients had ≤30% residual diameter stenosis

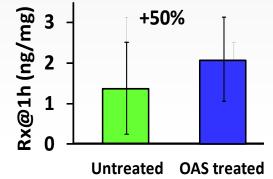
*Patency based on a DUS PSVR <2.5; Binary Restensis was reported as 22.8%. The JET Registry had limited DUS follow-up at 12 months (57/241 patients)

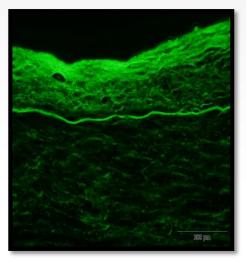
Atherectomy + DCB: Is Two Better Than One

PACCOCATH (2009) Granada JF. Open Heart. 2014 **IN.PACT**


STELLAREX

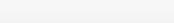
DCB Mechanism of Action: Solid Phase Drug Delivery to Media/Adventitia



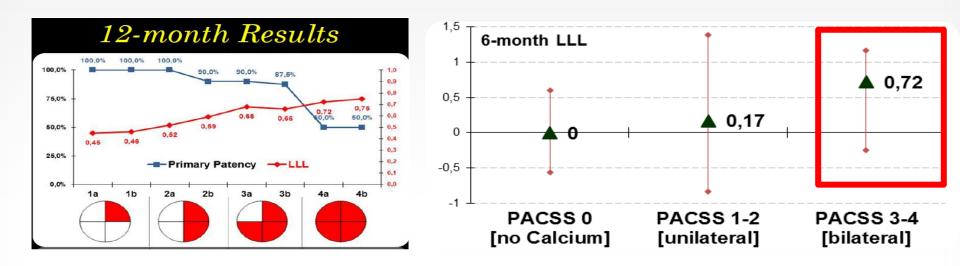


Cadaveric Study with Orbital Atherectomy + DCB

Drug Uptake Level

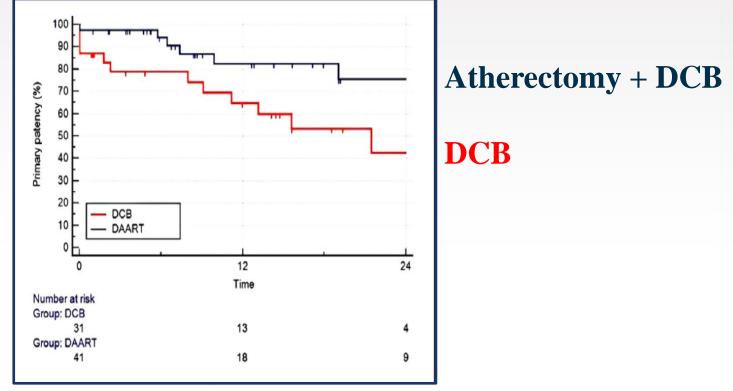


6 X deeper penetration with OAS


Edelman E. EuroPCR 2015

Calcium: Barrier to Drug Penetration?

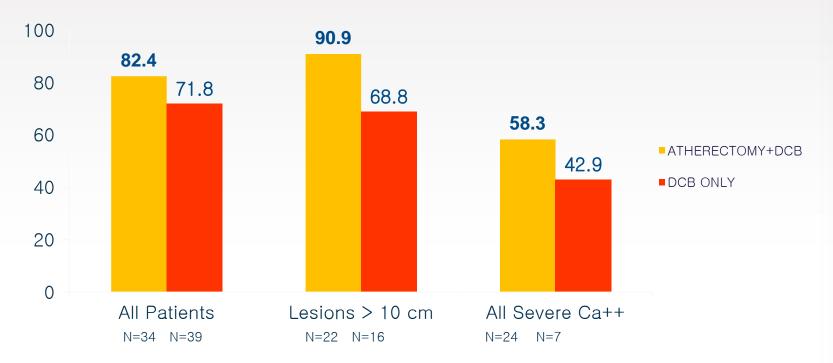
Fanelli F et al Cardiovas Interv Radiol 2014
 Tepe G. ISET 2014
 Tepe G. J Vasc Surgery 2015


Evidence: Published Studies of Atherectomy + DCB

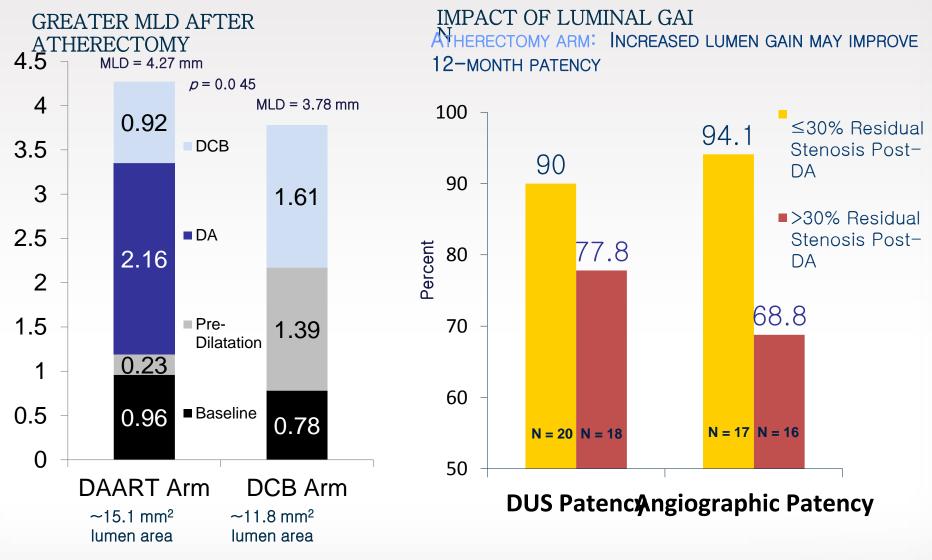
Study (* Core Lab)	Туре	Patients	Dissection (≥Grade C)	Patency BO Stent	30-day MAE	1-year	>1-year
*DEFINITIVE AR ¹	DA + DCB	48 (DA+DCB) 54 (DCB alone)	2% (1/48) 18.5% (10/54)	0% (0/48) NR	2.1% (1/48) 1.9% (1/54)	84.6% 81.3%	?
STAVROULAKIS ²	DA+DCB	41 (DA+DCB) 31 (DCB alone)	NR	5% (2/41) 16% (5/31)	NR	85% 65%	?
CIOPPA ³	DA+DCB	30 (DA + D	NR	6.5% (2/30)	NR	90%	?
SIXT ⁴	DA+DC B	29 (DA+DCB) 60 (PTA)	NR	12.4%(11/89)	NR	84.7% 43.8%	?
GANDINI ⁵ ISR	Laser+ DCB	24 (Laser+DCB) 24 (DCB alone)	0% 0%	8% (2/24) 0% (0/24)	NR	66.7% 37.5%	?
KOKKINIDIS ⁶ I SR	Laser+ DCB	62 (Laser+DCB) 50(Laser+POBA)	1.6% (1/62) 0% (0/50)	32% 19/60 58% (29/50)	NR	86.7% 56.9%	?

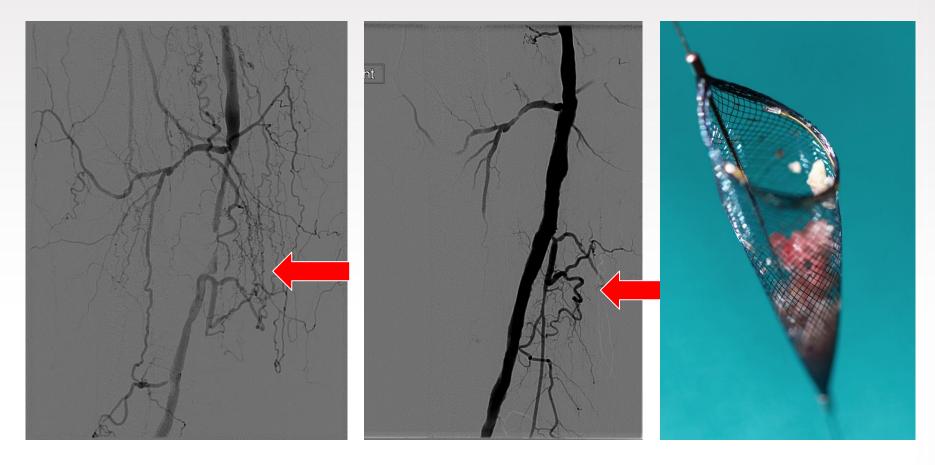
- TCTAP 2019
- Zeller J, et al. Circ Cardiovasc Interv 10 doi: 10.1161:2017.
 Stavroulakis K, et al. J Endovasc Ther 24(2):181-88:2017.
- 3. Cioppa A, et al. Cardiovasc Revasc Med 13(4): 219-223:2012
- 4. Sixt S, et al. J Vasc Surg 58(3): 682-86:2013
- 5. Gandini R, et al. J Endovasc Ther 20: 805-14: 2013
- 6. Kokkinidis D., et al. J Endovasc Ther 25(1):81-88 :2017..

Calcium Diminishes Acute and Long-Term Outcomes Single Center Randomized Study n=72 Patients


24-month Results

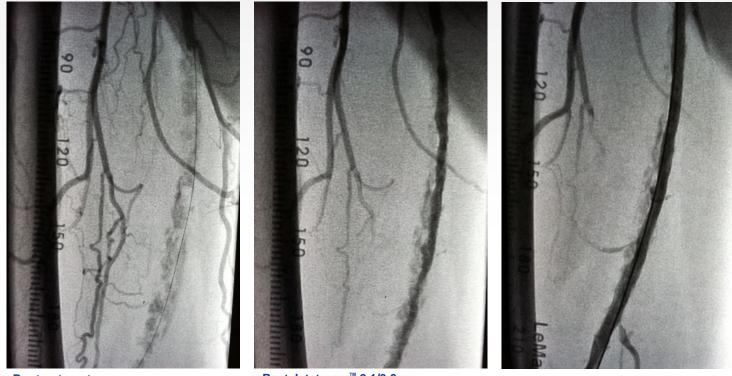
DEFINITIVE AR


ANGIOGRAPHIC PATENCY



TCTAP 2019

CVRF


Calcified Lesion: Directional Atherectomy with DCB

Severely Calcified Right SFA disease Jetstream + DCB

Pre-treatment

Post Jetstream[™] 2.1/3.0 mm

Post DCB Treatment

Left CFA Stenosis Orbital Atherectomy 7/40 InPact Admiral DCB

REALITY STUDY –

Does the Use of DA prior to DCB improve long te rm outcomes in patients with *long lesions and calcified lesions*

- Multi-center, prospective, single-arm observational
- 250 subjects in several sites across the U.S. and EU
- Stopped at 100 patients
- Angiographic and duplex ultrasound core lab
- Primary patency assessed by duplex ultrasound at 12months.
- 24 months CD-TLR.
- REALITY study will help answer this question more definitively

JET-RANGER Clinical Study

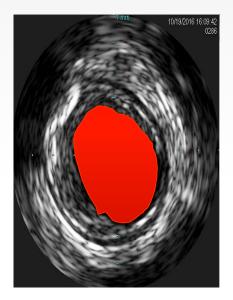
Clinical Study Overview: JET-RANGER (Investigator sponsored IDE)*				
Title	<u>JET</u> Stream Athe <u>R</u> ectomy With <u>A</u> djunctive Paclitaxel-Coated Balloo <u>N</u> Angioplasty vs Plain Old Balloon An <u>G</u> ioplasty Followed by Paclitaxel-Coated Balloon in Treating Compl <u>E</u> x Denovo Femo <u>R</u> opopliteal Arterial Disease (JET- RANGER)			
Study Chairman/ C o-Pl Sponsor	Nicolas W. Shammas, MD/Co-PI: Lawrence Garcia, MD Midwest Cardiovascular Research Foundation			
Objective	Test the hypothesis that Jetstream atherectomy followed by DCB (Ranger or IN.PACT Paclitaxel Drug Coated Balloon) improves target lesion revasculariz ation at 1 year follow-up when compared to balloon angioplasty followed by DCB in the treatment of femoropopliteal arterial de novo disease			
Study Design	Prospective, multicenter, randomized study Jetstream + DCB vs PTA + DCB (2:1 randomization)			
Patients	255 patients at up to 25 US sites Rutherford category 2-4 and ≥70% de novo stenosis with: lesion length ≥10 cm, or chronic total occlusion (any length) in the SFA and/or popliteal artery, or calcification of ≥ grade by PACCS			
Endpoints	Effectiveness: Target Lesion Revascularization at 1 Year: intra-procedural bail out stenting of the index lesion is considered meeting a TLR endpoint. Safety: Major Adverse Events (MAE) at 30 days: applancedearmoutation, total mortality or TLR at 30 days (TLR includes bail out stenting)			

ClinicalTrials.gov Identifier: NCT03206762

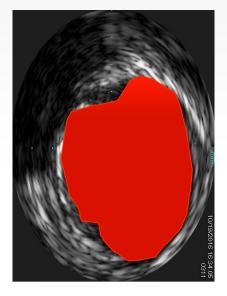
Enrolling

SUMMARY

- Many options for treating patients with Fem-Pop Disease
- Severe calcium can result in adverse acute and long-term outcomes if not treated appropriately
- Atherectomy plays an important role to remove calcium which cannot be achieved by other modalities
- Standard of care in my practice
- Several small single center studies and one randomized study so far show promise
- Await results of larger/randomized trials

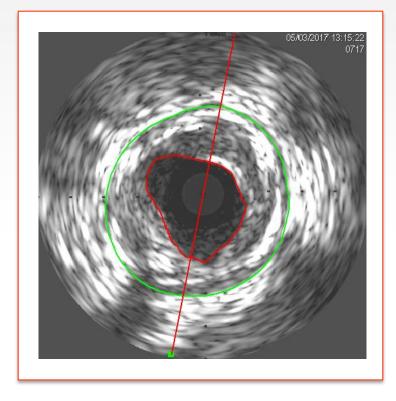


Thank you!



REALITY: IVUS Plaque Burden Analysis

Post-DA



The Benefit of Lumen Gain is Exponential

Plaque Burden: An area-based calculation and percentage

Vessel Area: $4\pi r^2$ Lumen Area: πr^2 Plaque Burden(Area) = $3\pi r^2$

Percent: 75

Benefits of Atherectomy + DCB

■May provide added benefit in lesions ≥10cm & severely calcified lesions

 Good atherectomy (<30% stenosis after DA alone) may improve patency

