Angioplasty Summit TCTAP 2010

Technical Aspects of Overview in CTO-PCI Toyohashi Heart Center Takahiko Suzuki, M.D

Introduction

- **CTO-PCI** has been technically and technologically evolved over the past two decades; thereby resulted in the expansion of indications.
- In technical perspective, the development of various techniques including parallel wiring, IVUS guided wiring, as well as retrograde wiring technique was introduced.
- In technological perspective, new guidewires were introduced and significantly improved the success rate of CTO-PCIs.
- The advent of the drug-eluting stent has been improved the long-term patency rate.

Objective

The aim of this presentation is to introduce current overview CTO-PCI including the operator technique, equipment, and outcomes.

Devices

CTO wires Microcatheters Balloon catheters

1. The superior performance of the device **Current CTO guidewires**

Spring coil wire

Neo's Miracle[®] (Getz Brothers) Neo's Conquest (Getz Brothers) AthleteGT Magic[®] (Japan Life Line) Zeon CTO wire[®] (Zeon Medical) **Hydrophilic coated wire**

Wizard (Nihon Lifeline) Fielder bros (Asahi Intec) X-treme (Asahi Intec) Choice PT[®] (Boston Scientific)

Spring coil wires

<u>Miracle</u>		Wire Diameter	Tip Radiopaque
<u></u>		0.014"/ 0.014 "	11cm Platinum
0.014	0.014"	Tip Stiffness	Coating (Dis./ Prox.)
Silicon Coating Coil	Teflon Coating	3.0,4.5,6.0,12.0g	Silicon / Teflon

<u>Magic</u>	Wire Diameter	Tip Radiopaque
	0.014"/ 0.014 "	2cm Gold Tip
0.014"	Tip Stiffness	Coating (Dis./ Prox.)
Hydrophilic Coating Coil Teflon Coating	4.5,9.0,18.0g	Hydrophilic / Teflon

ZEON CTO NEW!	Wire Diameter	Tip Radiopaque
	0.012" / 0.014 "	12cm Platinum
δ. 0.014 "	Tip Stiffness	Coating (Dis./ Prox.)
Hydrophilic Coating Coil Teflon Coating	4.5,9.0,15.0g	Hydrophilic / Teflon

CO		Vizard Basic Informatio Specificatio	
PTCA GUIDE WIRE ATHLETE	Wizard 1		
1g	O.D: 0.010" / 4cm	O.D: 0.014" / 12.5cm	
PTCA GUIDE WIRE ATHLETE	Wizard 3		
3g	O.D: 0.010" / 4cm	O.D: 0.014" / 12.5cm	

Model	Tip Stiffness	Radiopaque	Coating	全長
WIZARD 1	1g	16.5cm	17cm Hydrophilic	178cm
WIZARD 3	3g	16.5cm	17cm Hydrophilic	178cm

Microcatheters

Microcatheters

Transit 2 (Cordis) Excelsior (Boston Scientific) Good Master (Goodman) Finecross MG (Terumo) Ichibanyari (Kaneka) **Tornus (Asahi Intec) Corsair (Asahi Intec)**

Micro catheters

Transit 2 (Cordis)

Micro catheters

Tornus (Asahi Intecc)

Basic structure is same as Tornus device.

Balloon Catheters

Operator Techniques

Single technique Parallel wiring technique IVUS guide wiring technique Retrograde wiring technique

Advanced CTO technique-1

Parallel Wire (Contact wire Technique)

Parallel (contact) wire technique is effective when the stiffer guidewire go into subintima and make a false lumen. CCT 2010 Live Case Demonstration Toyohashi Heart Center

CCT 2010 Case 19 T 70's. male <u>Target Lesion: mid LAD</u> (CTO)

Diagnosis: OMI, AP Prior intervention:

'09.12.15 STENT (ost RCA AMI) Cypher STENT (prox. RCA) TAXUS Coronary risk factor:

HT, Current smoking

EuroSCORE: 5 SYNTAX Score: 36

Final CAG findings: '09.12.15 LVEF: 46% CAG: <u>mid LAD 100%,</u> LM 50%, prox. LCX 75%, mid LCX 90%, prox RCA 90%(AMI)-> 0%(Cypher+TAXUS)

Advanced CTO technique-2

IVUS Guided Wiring Crossing Technique

How to IVUS Guide Wire Crossing Technique

- 1. Advance the guidewire into the subintimal space
- 2. Subintimal space is enlarged with a 1.5mm balloon catheter along with the guidewire
- 3. IVUS catheter is advanced into the subintimal space. Stiff guidewire is advanced into the true lumen.
- 4. Wire manipulation under IVUS imaging

Advanced CTO technique-3

Retrograde Technique

Concept of CARTTM technique

(Controlled Antegrade and Retrograde subintimal Tracking)

- make connection between antegrade and retrograde subintimal space utilizing behavior of subintimal dissection.
- antegrade wire automatically gets into distal true lumen.

Bilateral Approach for CTO lesion

What is the major limitation of primitive CART?

Retrograde wire usually gets into plaque, not into subintima at proximal part of distal CTO end so that retrograde balloon is inflated at intra-plaque.

If antegrade wire is advanced into subintima at the site of retrograde balloon dilation, it is difficult to direct the antegrade wire to the true distal lumen, similar to a difficult situation in the antegrade approach.

PCI-CTO

Toyohashi Experience

Doctors in THC

^{循現辭內科卻是} 朝倉靖

-

^{循環器内科倒長} 寺島 充康

^{循環器内科医長} 那須 賢哉

^{循現群內科創長} 朝倉 恵子

^{循環器内科創長} 土金 悦夫 ^{循現辭內科創長} 江原 真理子

循環辭內科創長 木下 順久

^{医師} 羽原 真人

Eff 三浦英男

Number of CTO-PCI

Lesion Characteristics ('99-'09, n=1577)

Target vessel

RCA	<i>621</i>	(39.4%)
LAD	473	(30.1%)
LCX	334	(21.2%)
LMT	8	(0.5%)
Branch	138	(8.8%)
Bypass graft	2	(0.13%)
Prior PCI	424	(26.9%)
In-stent occlusion	171	(10.8%)
Bending>45°	194	(12.3%)
Calcified lesion	555	(35.2%)
Significant side branc	h 231	(14.6%)

Toyohashi experience

CTO-PCI ('04 vs. '09)

Crossed guide wires

Crossing Techniques (2009, n=118)

CART	Failure
12%	3%

VUS guide	Paralle
7%	wire
	<i>11%</i>

Toyohashi experience CTO-PCI ('04 vs. '09)

Successful guide wire technique by year

Initial Success Rate

<u>86.9% (988/1136)</u>

Toyohashi experience CTO-PCI ('04 vs. '09)

Success rate of guide wire crossing

Complications **Major complications** - Death in hospital - Emergency CABG - *Q*-*M***I** Minor complications – Cardiac tamponade - Aortic dissection - Acute occlusion - Subacute occlusion - Side branch compromise - Coronary perforation • Type-I • Type-II

8 (0.5%) 4 (0.3%) 5 (0.3%)

14 (0.9%) 5 (0.3%) 12 (0.8%) 4 (0.3%) 50 (3.2%)

Angiographic Follow Up

	BMS era (Jan. '03-Sep. '04)	DES era (Jan. '07-Dec. '8)	
No. of CTOs	227	307	
Initial success	183 (80.6%)	279(90.9%)	
No. of CAG F/U	139 (76.0%)	163 (58.4%)	
No. of restenosis	54 (38.8%)	37 (22.7%)	
No. of reocclusion	23 (16.5%)	12 (7.4%)	
	77 (55.3%)	<i>49 (30.1%)</i>	
No. of TLR	<i>60 (43.1%)</i>	41 (25.1%)	
Clinical restenosis	<i>29.5%</i>	17.6%	
Clinical TLR	<i>32.8%</i>	<i>14.7%</i>	
Mean F/U period	7.1 ±4.4 (mos)	9.3 ± 4.9 _(mos.)	

Summary

- The success rate of CTO-PCI in Toyohashi Heart Center is very high with low restenosis and reocclusion rates.
- With expert technique as well as appropriate device selections, CTO-PCI is not inferior to CABG.

Summary

- Over the past two decades, CTO-PCI has dramatically evolved in both technical and technological aspects.
- The advent of drug-eluting stents has also improved the long-term patency rate of CTO-PCI.
- Therefore, the role of vascular interventionists further expanded.

		and a local state of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	T 🦳			
			Save	6
			Date!!	¥
minar of	Angioplas	ty of Chron	ic Total Oco	lusions
	minar of	minar of Angioplas	minar of Angioplasty of Chron	Save the Date!! minar of Angioplasty of Chronic Total Occ