PCI for Bifurcation Coronary Lesion

Bifurcation Lesions PCI is Challenging

Higher acute complication

- Lower success rates
- Higher restenosis & TLR
 Restenosis Rate
 21 ~ 57%
 TLR
 8 ~ 43%

Event Free Survival after PCI NHLBI Registry

Suwaidi J, et al. AJC 2001;87:1139-44

Side Branch Loss

Main Mechanism of Adverse Outcomes

Predictors of Side Branch Occlusion

Side branch DS > 50 %
Disease burden in parent vessel at take-off of side branch
Dissection of parent vessel

How to Stent?

Stenting Technique

T Stenting

Main vessel

Crediovascular Research Foundation

Y (Culotte) Stenting

Kissing Stenting Large proximal reference size

Issues in the DES Era For Bifurcation Disease

- BMS vs. DES
- Single stent vs. Multiple stent
- Stenting technique

DES is better than **BMS**

No doubt !

Striking reduction of intimal growth at least in the main vessel

Cardiovascular Research Foundation

Single vs. Multiple Stents

Unanswered yet.

Single vs. Multiple Stents

In the Era of Bare Metal Stent

Single Stent vs. Two Stent				
Procedural Results				
	Single (n=39)	Double (n=53)	Р	
Ref. Vessel (mm)	3.0 ± 0.4	3.1 ± 0.6	NS	
Kissing balloon (%)	56	92	< 0.05	
Procedural time (min)	98 ± 45	127 ± 52	< 0.05	
Success (%)	92	87	NS	
In-hosp. MACE (%)	0	13	< 0.05	

Yamashita T, et al. JACC 2000;35:1145-51

Single Stent vs. Two Stent 6 Month Restenosis Rate

Anzuini A, et al. Am J Cardiol 2001;88:1246-50

Single Stent vs. Two Stent Event Free Survival Freedom from death, MI, CABG, rePTCA & severe angina

Two bare metal stents are not better than single stent.

Stent in main vessel and POBA in side branch with Optional kissing balloon

Cardiovascular Research Foundation

Single vs. Multiple Stents

In the Era of Drug Eluting Stent

Cardiovascular Research Foundation

Cypher Bifurcation RCT

	PTCA of the SB (n=47)	Routine stent SB (n=44)	Р
Death	0 (0 %)	1 (2.3 %)	NS
MI	2 (4.3 %)	0 (0 %)	NS
TLR	1 (2.1 %)	2 (4.5 %)	NS
MACE	3 (6.4 %)	3 (6.8 %)	NS
Restenosis			
Main vessel	1 (3 %)	2 (6 %)	NS
Side branch	2 (6 %)	4 (13 %)	NS

Pan M et al, ACC 2004

A Colombo, et al. AHA 2002

Procedural Technique			
SIRIUS Bifurcation Study			
Technique	Stent / Stent (n=63)	Stent / PTCA (n=22)	
T- stenting	60		
Side branch first	40		
Main vessel first	20		
V- stenting	1		
Y- stenting	2		
Kissing balloon	60 (95%)	19 (86%)	
GP II b/IIIa inhibitor	27 (43%)	8 (37%)	

A Colombo, et al. AHA 2002

Main Vessel **Minimal Lumen Diameter SIRIUS Bifurcation**

CORF Cardiovascular Research Foundation

Side Branch Minimal Lumen Diameter SIRIUS Bifurcation

CORF Cardiovascular Research Foundation

In-Segment Restenosis

SIRIUS Bifurcation

In-Segment Restensis Site SIRIUS Bifurcation

A Colombo, et al. AHA 2002

What We Learned DES In Bifurcation Lesion

• Effective

Nearly eliminate restenosis in the main vessel

• Ineffective

Persistent disturbingly high restenosis at the uncovered side branch ostium

Stenting Technique

In the Era of Drug Eluting Stent

Lesson from SIRIUS Bifurcation Limitation of T-Stenting Potential gap susceptible to restenosis

How to solve the problem ? Complete coverage of side branch ostium

New Technique with DES Stent - Crush

Stent Crush with Cypher 108 patients, April 2003 ~ Nov. 2003 **In-hospital events** No death, MI, CABG, urgent TLR **30- day outcome** No death Stent thrombosis 1.9 % (2/108) **Intermediate- term clinical outcome** No death, MI **TLR** 12 % (9/108)

I Moussa, ACC 2004

One More Step of Stent - Crush Final Kissing Balloon Dilatation

Re-advancement of wire into the side branch Opening of the side branch ostium Final kissing balloon inflation

CVRF Cardiovascular Research Foundation

Final Kissing Necessary during Crushing with DES? In-Hospital Clinical Outcome

VRF Cardiovascular Research Foundation

Crush with Cypher Final kissing vs No Kissing

Main Vessel

FKNo FKpAcute gain, mm 2.05 ± 0.6 1.78 ± 0.6 < 0.001Late loss, mm 0.49 ± 0.7 0.62 ± 0.6 0.01

Side Branch

FKNo FKpAcute gain, mm 2.03 ± 0.7 1.27 ± 0.5 < 0.001</td>Late loss, mm 0.66 ± 0.8 1.10 ± 0.8 < 0.001</td>

A Colombo, ACC 2004

Kissing Balloon Inflation Should be performed

Full expansion of the side-branch stent
Release of side-branch from jail
Sequential inflation for increasing successful final kissing dilataion

Stent Crush with DES

What we know

Acutely predictable result
Guaranties stent coverage of the ostium of the side branch

What we don't know

- Acute & long-term safety
- Impact on restenosis

Wait the result of MATRIX Registry !

RESEARCH Bifurcation **SES (n=127) or PES (n=72)** Subacute thrombosis 2.5 % • TLR 7 % 9 % • TVR Binary Restenosis 9 % Main vessel 14 % Side branch

Serruys et al, ACC 2004

Stenting Technique RESEARCH : CYPHER vs. TAXUS

CYPHER (n=123) April 2003 ~ April 2004 TAXUS (n=71) Mar. 2004~ Sep. 2004

TVR in RESEARCH Bifurcation CYPHER vs. TAXUS T stent Crush 35 **Kissing stent** 30 Culotte % TVR 25

CYPHER

20

15

10

5

 \bigcap

Serruys et al, ACC 2004

TAXUS

Bifurcation Lesions in AMC Treatment Strategies Total 205 lesions except left main bifurcation

Cardiovascular Research Foundation

AMC-Bifurcation

Late Loss at 6-month angiography

	No	Main vessel	Side branch
Single stent	62	0.21±0.46	0.06±0.44
T-stent	4	0.21±0.46	0.16±0.49
Stent-crush	14	0.16±0.45	0.51±0.88
Kissing stent	19	0.55±0.60	0.34±0.34

AMC-Bifurcation Restenosis Rate

AMC-Bifurcation Restenosis Rate

Emerging New Technique "Internal" or "Reverse" Crush allows provisional SB stenting with full ostial coverage

Internal or Reverse Crush

 Allows provisional stenting of the side-branch with a fall-back strategy that delivers coverage of the sidebranch ostium without gaps.

• Limitation : it may be difficult to pass stent to side-branch

Future Perspectives in the Era of DES

Following consideration should be evaluated

- Fate of side branch with DES
- Randomized comparison of
 - Two vs. Single DES
 - -Different two DES tecnique
- New bifurcated stent

New Modality for Bifurcation Lesion ?

True Bifurcated Stent
Drug Eluting Stent

Cardiovascular Research Foundation

Bifurcated Stents

Guidant Frontier Stent

BARD Bifurcate XT

Bifurcated Stent

Cordis DBS Stent

34 patients (mean 64 years)

Technical Success 94%
MACE @ 30 days 0%
Restenosis @ 6 Mo 33%
TLR 19%

Dibie A, et al. Am J Cardiol 2002;90:13H

Cardiovascular Research Foundation

Bifurcated Stents

AST SLK-View

Stent length = 17mm Catheter length = 140 cm Crossing profile = 0.055 IN Available in two sizes

- 3.0mm with 2.5mm side hole

- 3.5mm with 3.0mm side hole

Bifurcated Stents

AST SLK-View

Main catheter system comprises of a main stent with a side hole and a stabilizing catheter, which allows access to side branch after stenting

AST SLK-View Stent

AMC Experience 48 patients (mean 58 years), 50 lesions

	Parent vessel	Side branch	
Technical Success	100 %	100 %	
Side branch accessibility		100 %	
Side branch preservation		100 %	
after stenting			

Kim YH, et al. TCT 2002

AST SLK-View Stent

US Safety & Feasibility study

31 patients, 31 bifurcation lesions

Device Success
MACE (a) in-hospital
MACE (a) 30 days
MACE (a) 6 Mo
TLR

92.9 % (29 / 31) 0 % 3.4 % 48 % (14 pts) 45 % (13 pts)

Buchbinder et al. TCT 2003

Bifurcated Stent

Invatec DESIRE study

34 patients (mean 64 years)

- Technical Success 94%
- MACE @ 30 days
- Restenosis @ 6 Mo
- TLR

0% 33% 19%

A Colombo, et al. JIM 2004

Bifurcated Stent

105 patients (mean 62 years)

- Device Success
 <u>MACE (a) 30 days</u>
- *Restenosis* @ 6 Mo *TLR*

92% 3% 29% 13%

Lefevre, et al. TCT 2003