Nonsurgical Septal **Reduction Therapy** for **Hypertrophic Obstructive** Cardiomyopathy

Hypertrophic Obstructive Cardiomyopathy

- Left ventricular(LV) outflow obstruction
 : an important determinant of symptoms
- Therapies that reduce the LV outflow perssure gradient
 - → may improve LV filling pressure and symptoms

Effect of LVOT obstruction on Survival

Nonpharmacologic Therapies that Reduce LVOT Obstruction

- Surgical myectomy or myotomy
- DDD pacemaker therapy
- Nonsurgical septal reduction therapy

(NSRT); introduced by Sigwart et al

Merits of NSRT

- Nonsurgical technique
- Marked hemodynamic improvement
- Technically easy to interventional cardiologist

* There have been an estimated 3,000 NSRT procedures performed worldwide.

Current Indications

Symptomatic HOCM with

- Unresponsive to medical therapy
- LVOT pressure gradient
 - Resting ≥ 30 mmHg
 - Stress induced ≥ 60 mmHg
- Septal thickness ≥ 18 mm

Procedure of NSRT

Target Artery

Acute reduction in resting PG by > 50% or < 20 mmHg

No Reflow

Procedure

- Temporary pacemaker insertion
- Hemodynamic measurements
- 7~8F guiding catheter into the LCA ostium
- Angioplasty balloon (1.5~2.5 mm) positioned at proximal portion of the septal artery

Procedure

• Myocardial contrast echocardiography for proper localization and quantification of septal infarct after enthanol injection

Exclusion of dye reflux into the LAD

Myocardial Contrast EchoCG

Baseline **Contrast Ethanol**

MCE enhances the effectiveness and safety of NSRT by avoiding arteries that supply distant regions of myocardium

Myocardial Contrast Echocardiography

- Estimation of the size of the septal vascular territory with MCE
- → Accurate, safe and feasible in patients during NSRT.

JACC 1998; 32 : 225-9

Procedure

- 4-8 mg morphine IV for pain control
- Absolute alcohol (1 3 ml) injection
- 5 minutes dwelling before balloon deflation

Postprocedural Management

- Admission to CCU
 - Careful ECG monitoring with temporary pacemaker back up
 - Cardiac enzyme F/U for 1 ~ 3 days
- Discharge: usually 7 days after procedure

Evolution of LVOT PG Estimated by Echo Doppler

Heart 2000; 83: 326-31

NYHA Class After NSRT

Spencer W, TCT 2003

Exercise Testing After NSRT

Echocardiography After NSRT

Resting LVOT gradient

Dynamic LVOT gradient

um w et at. NEJM 2002;547:1520

Septal Thickness After NSRT

Spencer W, TCT 2003

Predictors of Unsatisfactory Outcome after NSRT

39/173 (22.5%)

- Resting LVOT gradient at cath lab ≥ 25 mm
 Hg (OR, 5.5; P=0.01)
- Peak CK <1300 U/L (OR, 2.5; *P*=0.04):
 critical site and mass

"the importance of not only a <u>critical site</u> but also a <u>critical mass</u> of septal necrosis for an effective NSRT"

Circulation 2004;109:824-827

ANGIOPLASTY SUMMIT

Complete AV block Predictor of PPM

	OR	95%CI	P-Value
LBBB	39	3.6-416	0.002
> 2 septal injected	4.6	1.3-16	0.016
Bolus ethanol injection	51	3.5-735	0.004
1 st -degree AVB	14	3-69	0.001
Female	4.3	1.3-15	0.02

Complete AV block: $30\sim40\%$ \rightarrow The incidence is reduced to $5\sim20\%$ after using reduced amount of alcohol, slow infusion, MCE

Complications

- Complete AV block; 30~40%; the incidence is reduced to 5~20%
 - Smaller doses of alcohol
 - Slow injection
 - MCE
- Large myocardial infarction
- VSD or myocardial perforation
- Intractable ventricular fibrillation
- No reflow of LAD artery
- Death (Pooled data: 1.5 %)

AMC Experience

Patients

- December 1996 and May 2003
- 37 patients with symptomatic HCMP

(20 females, 17 males)

Procedure Summary

Target artery

```
1<sup>st</sup> septal branch; 31 (80%)
```

2nd septal branch; 6 (15%)

1st and 2nd septal branches; 2 (5%)

- Alcohol amount: $4.0 \pm 2.2 \text{ml} (1.5 \sim 10)$
- Use of MCE: 12 cases (31%)

Therapeutic effect

Symptomatic improvement in the majority of patients after NSRT (≈ 80%)

AJC1999;83:1220

Hemodynamic effect

AJC1999;83:1220

Exercise Test

1 -	20)
(n	=2())
•	/

	Baseline	3 months	1 year
Exercise time(s)	573 ± 47	742 ± 46†	763 ± 58†
Peak HR	137 ± 11	142 ± 6	139 ± 76
Peak SBP(mmHg)	132 ± 10	160 ± 5†	166 <u>+</u> 7†
VO ₂ at rest(ml/min)	238 ± 13	268 ± 11*	271 <u>+</u> 18*
VO ₂ max(ml/min/kg)	18.5 ± 1.5	22.6 ± 1.3†	22.9 ± 1.8†

^{*}p<0.05 and †p<0.01 vs baseline

NSRT leads to significant improvement of overall exercise capacity as well as symptomatic improvement.

AJC1999;83:1220

Echocardiographic Data

N = 37

				,
	Baseline	Immediate post- procedure	6 months after procedure	F/U data
LVESD (mm)	23.3 ± 5.6	23.4 ± 4.7	25.9 ± 5.3*	26.5 ± 5.6*
LVEDD (mm)	41.7 ± 7.5	41.9 ± 6.4	45.1 ± 6.8*	45.3 ± 6.5*
IVS (mm)	22.0 ± 5.0	21.7 ± 4.8	18.6 ± 4.4*	18.4 ± 4.9*
LVPW (mm)	12.7 ± 2.3	12.4 ± 1.9	11.9 ± 2.5	11.9 ± 2.4
LA (mm)	47.0 ± 7.4	44.9 ± 6.1	46.6 ± 8.2	47.2 ± 7.5
LVOT PG (mmHg)	85.1 ± 45.8	53.7 ± 40.9*	47.1 ± 49.0*	49.2 ± 40.3*
* p<0.05				

Complications

 53.8 ± 22.2 months F/U

Early complications:

Death: 1 (3%)

LAD infarct: 1 (3%)

CAVB: permanent 2 (5%)

transient 18 (46%)

• Late outcomes:

Death: 4 (2 cardiac, 2 non-cardiac)

SCD: a consequence of NSRT or underlying HCMP?

Conclusions

• NSRT is a promising nonsurgical technique for septal myocardial reduction in HOCM

• Further follow-up studies may be needed to recommend NSRT as a primary therapy for HOCM.