Why and How We Utilize Imaging and Functional Information in LM PCI

Seung-Jung Park, MD, PhD

Professor of Medicine, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

CardioVascular Research Foundation

Why FFR ?

Visual Functional Mismatch

Visual : 80%

FFR : 0.82 Treadmill test : Negative Thallium spect : Normal Stress Echo : Negative

Reverse Mismatch

Visual Estimation : 30%

Angiography is Not Always Enough !

Thallium spect : + large LAD

How Many Mismatches ?

Mismatch in intermediate LM Disease

Hamilos M, Circulation 2009; 120: 1505-1512

Mismatch Intermediate LM Ostial and Shaft Disease (AMC data, n=112)

Overall 37% of Ostial and Shaft lesions showed Mismatches. Relatively Higher Frequency of Reverse Mismatches.

Why Mismatches ?

Multivariable Analysis to Predict Mismatches, Non-LM

IVUS Analysis of Prospective Cohort 1000 Patients

Mismatch

Significant Stenosis (>50%) Negative FFR (>0.80)

Older Age

Non-LAD location

Shorter lesion length Larger MLA by IVUS

Larger MLD by QCA

Smaller PB

Reverse Mismatch

Insignificant Stenosis (<50%), Positive FFR (<0.80)

Younger Age LAD location

Plaque Rupture

Smaller MLA by IVUS

Larger PB

Park SJ et

Park SJ et al, JACC Intv 2012;5:1029 -36

Multivariable Analysis to Predict FFR <0.80, LM (n=112)

Variables	OR	95%CI	p-value	
Model 1				
Plaque rupture	4.51	1.36-14.9	0.014	
BMI, kg/m²	1.19	1.00-1.40	0.05	
Age, year	0.95	0.90-1.00	0.033	
MLA, mm ²	0.37	0.25-0.56	<0.001	
Model 2				
LV mass, g	1.01	1.00-1.03	0.03	
Age, year	0.94	0.90-0.99	0.022	
MLA, mm ²	0.34	0.21-0.54	<0.001	

Model 1 included clinical, QCA, and IVUS variables Model 2 included Model 1 plus LV mass assessed by Echocardiography

Reverse Mismatch

Visual Estimation 30% DS

FFR : 0.70

Plaque Rupture, Smaller MLA and Large LV mass (Myocardium) Are Related with Positive FFR.

Plaque rupture, MLA 6.2mm²

CardioVascular Research Foundation

Why FFR ?

For the Decision Making ; To Treat or Not To Treat Accurate Diagnosis First !

How FFR?

Continuous IV Infusion of Adenosine, 140-280 ug/min/kg.

Is FFR Cut-Off 0.80, Validated in LM Disease Too ?

Validation of FFR Cut-Off for LM Disease; 0.74

(Matched with Thallium Perfusion Scan, n=38)

0.80 FFR Cut-Off Would Be Appropriate for LM Disease Too.

AMC FFR Registry data

How I Implement FFR in Real Practice ?

For the Undetermined, Intermediate Ostial and Shaft LM Lesion,

For the Intermediate LM Bifurcation Lesion,

If Transducer Placed Beyond Bifurcation in both LAD and LCX,

Single Unit of Disease

Composite FFR still Works.

Why IVUS Too?

Angiographic 80% LM Ostial Disease, And, Patient received CABG, But, IVUS finding is Free of Disease.

Angiography Is Not Always Enough, To Define Clinical Ischemia.

Why IVUS Too?

- 1. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- Separate IVUS Run of LCX Can Clarify the Disease Status of LCX Ostium and its Reference Vessel Size. Therefore, Treatment Strategy Would be Simplified.

LM Bifurcation Disease with Minimal LCX Disease

55/M, Stable angina, TMT (+), Thallium scan (-)

By IVUS, Reference Vessel Diameters of LM and LAD are Bigger than Angiographic Assessment, and the LCX ostium Showed Free of Disease.

We Did Just Single Stent Cross-Over !

Promus Element 4.0x20

Additional high pressure Inflation with 4.0 mm non-compliant balloon

COLLEGE MEDICINE

After Stent Cross-Over, LCX Ostium Was Jailed !

What Would You Do?

Do You Want to Treat Jailed Side Branch ? Consider FFR, First !

Just Defer ! It's Safe and Effective.

Why IVUS Too?

- 1. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- 2. Separate IVUS Run of LCX Can Clarify the Disease Status of LCX Ostium and its Reference Vessel Size. Therefore, Treatment Strategy Would be Simplified.
- **3.** IVUS Guided Stent Optimization and Effective Stent CSA Can Make a Good Clinical Outcomes.

IVUS Stent Area to Reduce Restenosis (Rule of 5,6,7,8)

Restenosis Rate < 5%, TLR < 2%

Overall Efficacy of IVUS Guidance

Meta-Analysis IVUS vs. CAG Guided PCI

A total of 23,392 patients (2 randomized trial and 12 observational studies)

Park SJ, Ahn JM, Unpublished Data, 2013

Death from Any Causes

Study name	Time point	t St	Statistics for each study			Odds ratio and 95% CI			
		OR	LL	UL	Z-Value	e P			
Roy	2008	0.79	0.54	1.16	-1.20	0.23			
MAIN-COMPARE	2009	0.26	0.11	0.63	-2.98	0.00			
Kim	2010	0.03	0.00	0.44	-2.57	0.01			
HOME DES IVUS	2010	1.52	0.26	8.87	0.46	0.64			
MATRIX	2011	0.53	0.29	0.97	-2.07	0.04			
COBIS	2011	0.47	0.26	0.83	-2.62	0.01			
Youn	2011	0.21	0.03	1.70	-1.46	0.14			
Hur	2012	0.49	0.36	0.66	-4.60	0.00			
EXCELLENT	2012	1.84	0.42	7.99	0.82	0.41			
Ahn	2012	0.48	0.29	0.79	-2.88	0.00			
Patel	2012	0.04	0.01	0.24	-3.66	0.00			
Chen	2012	0.09	0.00	1.58	-1.65	0.10			
ADAPT-DES	2012	0.88	0.64	1.20	-0.82	0.41			
AVIO	2013	0.20	0.01	4.17	-1.04	0.30			
Random pooled es	timate	0.50	0.36	0.69	-4.10 <	<0.001			
l ² =63						0	.01 0.1 1 10 100		
Favor IVUS Favor CAG									

COLLEGE MEDICINE

al Center

Park SJ, Ahn JM et al. Unpublished data, 2013

IVUS Guidance Saves Lives in LM PCI

Park SJ et al, Circulation. Cardiovasc Interv. 2009 Jun;2(3):167-77.

Why IVUS Too ?

- 1. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- Separate IVUS Run of LCX Can Clarify the Disease Status of LCX Ostium and its Reference Vessel Size. Therefore, Treatment Strategy Would be Simplified.
- 3. IVUS Guided Stent Optimization and Effective Stent CSA Can Make a Good Clinical Outcomes.
- 4. IVUS Guidance Reduced Death/MI and Saved Lives.

LM PCI

Can IVUS MLA Predict the Functional Significance of Stenosis In LM Disease ?

CardioVascular Research Foundation

IVUS MLA < 6.0 mm² is matched with FFR <0.75

CardioVascular Research Foundation

Jasti V et al. Circulation 2004;110:2831-6

edical Center

Why 6 mm² IVUS MLA Is Not Appropriate ?

Background, Geometric Abstraction

"The 6-mm² value was obtained from Murray's law (considering an MLA of 4 mm² as the ischemic threshold of the branches) and has been supported by a study that used IVUS and pressure wire flow fractional reserve (FFR)."

> De La Torre Hernandez et al. JACC 2011;58:351-8 Jasti V et al. Circulation 2004;110:2831-6

IVUS MLA Matched with FFR, Non-LM New Published Data

	N	FFR	RLA	MLA mm²	AUC	Sens	Spec	PPV	NPV	Accu
Briguori (2001, AJC)	53	0.75	7.8	4.0	—	92%	56%	38%	96%	64%
Takaki (1999, Circ)	51	0.75	9.3	3.0	—	83%	92%	_	—	_
Waksman (2013, JACC)	350	0.80	8.6	3.07	0.65	64%	65%	-	-	65%
Kang (2012, AJC)	784	0.80	8.2	2.4	0.77	84%	63%	48%	90%	69%
Kang (2011, Circ int)	236	0.80	7.6	2.4	0.80	90%	60%	37%	96%	68%
Gonzalo (2012, JACC)	47	0.80	7.1	2.36 IVUS	0.63	67%	65%	67%	65%	66%
Gonzalo (2012, JACC)	61	0.80	7.1	1.95 OCT	0.70	82%	63%	66%	80%	72%
Koo (2011, JACC int)	267	0.80	6.8	2.75	0.81	69%	65%	27%	81%	67%
Lee (2010, AJC)	94	0.75	5.9	2.0	0.80	82%	81%	_	_	81%

Murray's Law, Finet's Law, Huo and Kassab (HK)'s Law,

Ischemic Threshold of Branches Would Be < 3 mm² Based on the Current Data. The 6 mm² of IVUS MLA is Not Appropriate Anymore from Geometric Abstraction with Murray's Law, Finet's Law, and HK's Law.

New IVUS MLA In LM Disease (n=112)

AMC FFR Registry, New Data

New LM IVUS MLA Matched with FFR <0.80, Ostial and Shaft LM Disease

(n=55 lesions)

Kang SJ et al, JACC. Cardiovasc Interv. 2011 Nov;4(11):1168-74.

New Analysis with 112 LM Disease

(n=112 lesions)

Jasti's data (n=55)

AMC New Data (n=112) Jasti's data (n=55)

In Practice,

Smaller LM IVUS MLA of 4.5 mm² Can Predict Functional Significance of Stenosis (PPV 83%).

Why IVUS Too ?

- 1. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- Separate IVUS Run of LCX Can Clarify the Disease Status of LCX Ostium and its Reference Vessel Size. Therefore, Treatment Strategy Would be Simplified.
- **3.** IVUS Guided Stent Optimization and Effective Stent CSA Can Make a Good Clinical Outcomes.
- 4. IVUS Guidance Reduced Death/MI and Saved Lives.
 5. Smaller IV/US MLA 4.5 mm² Can Predict Euroctional
- Smaller IVUS MLA 4.5 mm² Can Predict Functional Significance of LM Stenosis.

• How to Treat ?

IVUS Minimal Stent CSA Criteria 5-6-7-8 mm² May Improve Long-term Clinical Outcomes.

Why FFR and IVUS ?

 FFR Guided Decision Making.
 IVUS Guided Sent Optimization.
 They are Complementary for the Good Clinical Outcomes.

