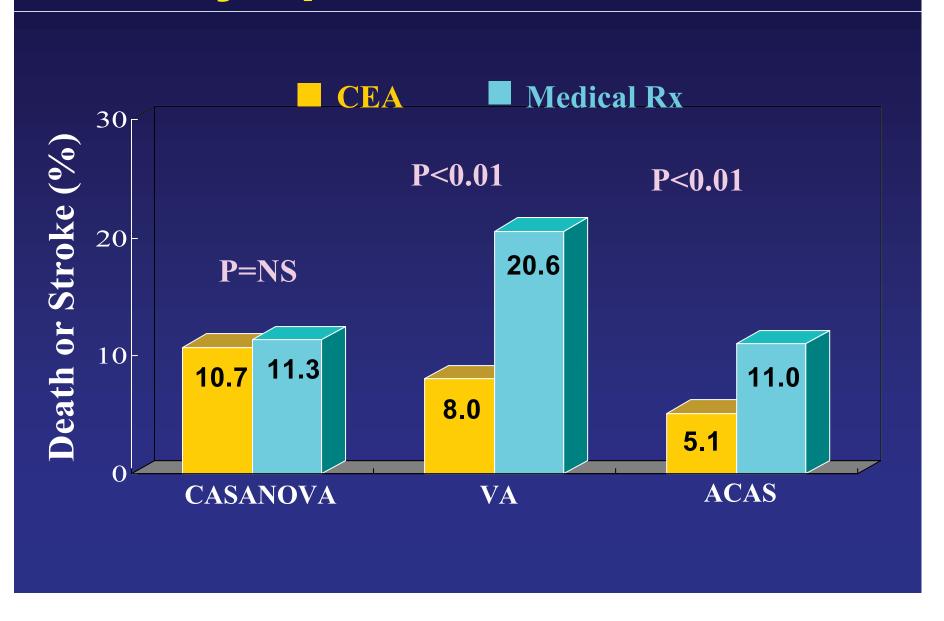

utcomes of Carotid Artery Stenting High to Extreme Risk Patients


Seong-Wook Park, MD, PhD, FACC

Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Symptomatic Patients

Asymptomatic Patients

BACKGROUND

Carotid endarterectomy has been shown to be superior to medical treatment in reducing the overall risk of stroke in symptomatic or asymptomatic patients with carotid artery stenosis

NASCET. N Engl J Med 1998;339:1415–142 ACAS. JAMA 1995;273:1421–142

However, in high risk patients, especially those with angina pectoris, mortality rates of 4–18% following carotid endarterectomy have been reported.

JAMA 1995; 273: 1421-

CAVATAS

Multicenter Randomized Trial: CEA vs. Angioplasty without protection

Stenting = only in 26%	Angioplasty N=251	CEA N=253
30-day death & stroke	6.4%	5.9 %
Cranial neuropathy	0 %	8.7 %
1-year restenosis *	14 %	4 %

emic heart disease; 38%, Prior MI: 18%, Atrial fibrillation; 10%, tralateral carotid artery occlusion: 9%

Lancet 2001;357:1729-17

CEA vs CAS without protection

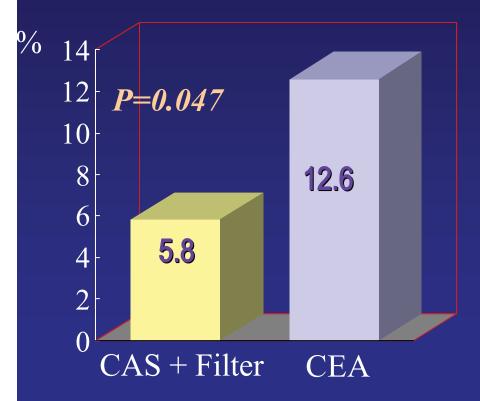
Prospective Randomized Trial:

EA
=51
J
0
0
1
0
7
3

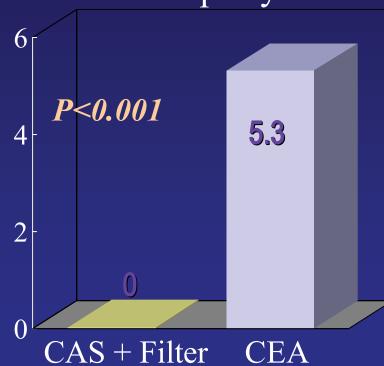
Brooks et al. J Am Coll Cardiol 2001:38:1

Ischemic heart disease: 35%

The SAPPHIRE Study


In high risk subsets for CEA
Stenting with filter device

vs. CEA


SAPPHIRE

30-Day Events

Death/MI/Stroke

Cranial n. palsy

BACKGROUND

Carotid artery stenting is now widely used a an alternative to CEA, and it may be a reasonable approach to high-risk patients.

However, outcome of high to extreme rispatients undergoing carotid artery stention has not been sufficiently evaluated.

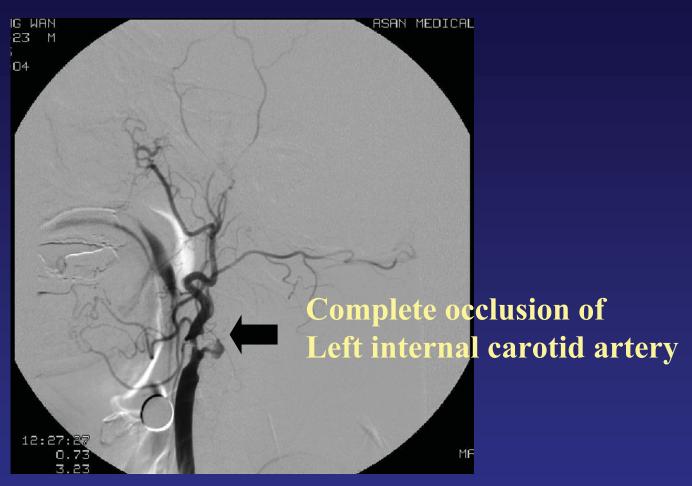
Purpose

We assessed the feasibility, safety, and clinical outcome in high to extreme risk patients undergoing percutaneous carot interventions.

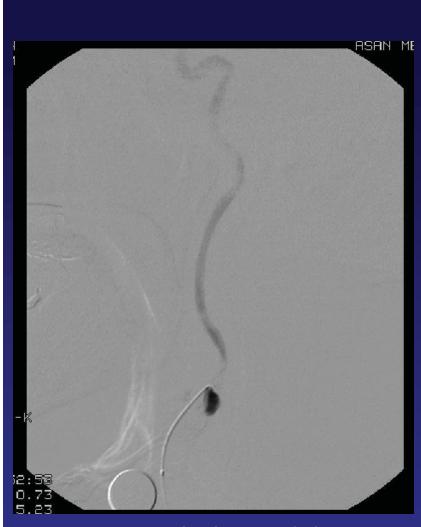
Study patients

From April 2001 to April 2004

Seventy consecutive high risk patients who underwent carotid artery stenting in 74 carotid arteries.


Definition

Procedural success: residual stenosis < 30% and bsence of major stroke, myocardial infarction or deat

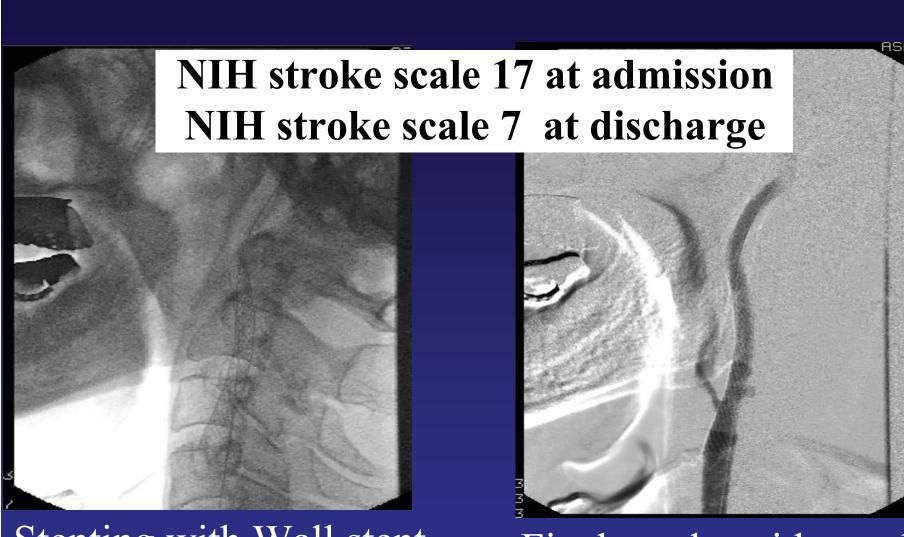

Minor stroke: change of NIH stroke scale by 3 esolved neurological deficit within 30 days

Major stroke: change of NIH stroke scale ≥ 4 persisted neurological deficit after 30 days

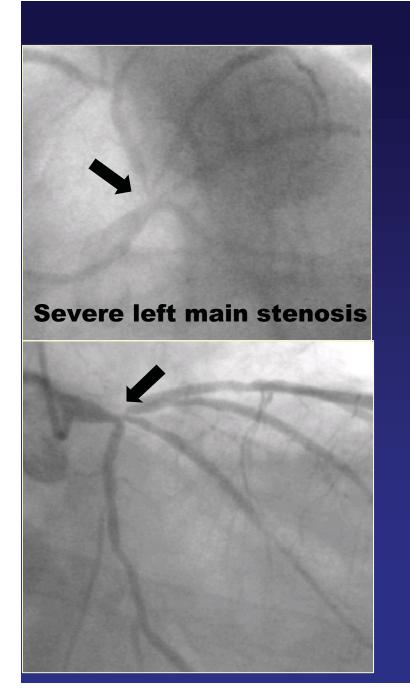
Myocardial infarction: CK-MB ≥ 3 fold upper normal

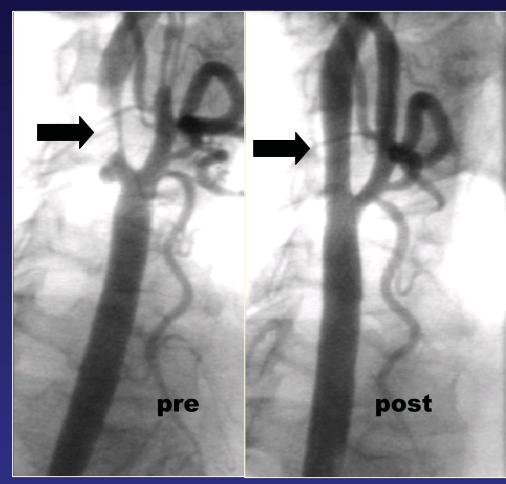
- M/80 years, right hemiplegia for 3 hrs
- Acute hemispheric stroke
- NIH stroke scale 17 at admission

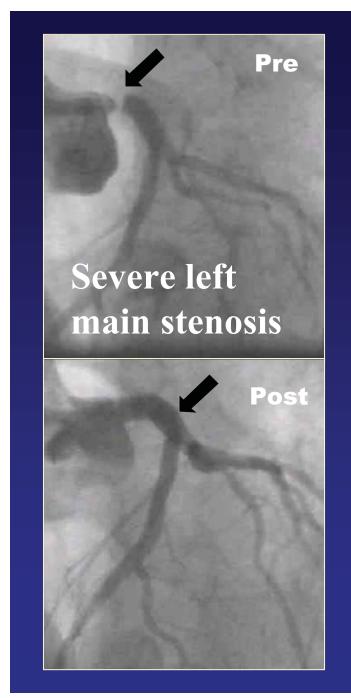
Intra-arterial urokinase 400,000 unit

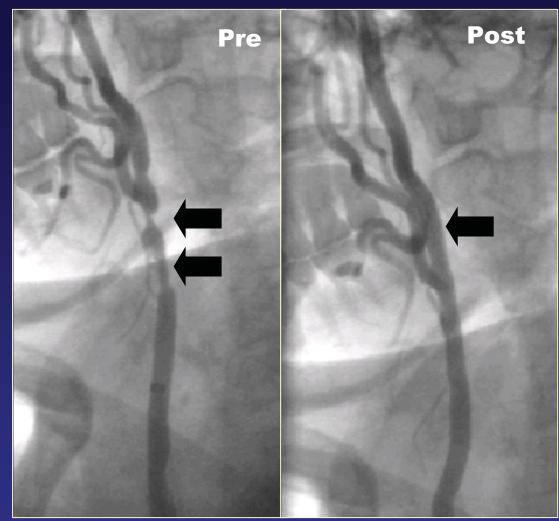

Recanalized left internal carotid artery

Balloon angioplasty with U-pass 3.0x20




Post-ballooning


Stenting with Wall stent 9x40mm


Final results with good antegrade flow

- 55YO Man with unstable angina
- CAG : LM+3VD
- No history of stroke
- Pre-CABG CAS was done

- 60YO woman with stable angina
- CAG: LM disease
- Simultaneous left main coronary artery and carotid artery stenting.

- 67 y man with 3VD waiting for CABG
- Presented with acuright hemiparesis with unstable neurological sympt
- Urgent carotid stenting performe

Baseline Characteristics

	n=70	
Age (years)	65±10	33-86
Age > 80 years	7	10%
Male gender	57	81.4%
Treated artery	74	100%
Symptomatic	47	67.1%
Hypertension	47	67.1%
Diabetes mellitus	30	42.9%
Peripheral vascular disease	7	10%

eason for High to Extreme Ris

	n=70	
eurologically unstable	33	47.1%
Hyperacute hemispheric stroke	13	18.6%
Evolving neurological deficit	20	28.6%
evere coronary artery disease	40	57.1%
Left main disease	6	8.6%
Unstable angina	25	35.7%
Recent myocardial infarction	2	2.9%
ymptomatic heart failure	4	5.7%
NYHA III/ IV	4/0	

ason for High to Extreme Ris

	n=70	
ge>80 years	7	10%
trial fibrillation	6	8.6%
urgically inaccessible	8	11.4%
ontra-lateral occlusion	11	15.7%
evere co-morbidity	6	8.6%
Renal failure	3	
Myelodysplastic syndrome	1	
Chronic obstructive pul ds	1	
Aortic dissection	1	

Reason for NASCET exclusion

IASCET:North America Symptomatic Carotid Endarterectomy Tr

	n=62	
ge>79 years	7	11.3%
Atrial fibrillation	6	9.7%
Jnstable angina	25	40.3%
Recent myocardial infarction	2	3.2%
Veurologically unstable	33	53.2%
ymptomatic heart failure	4	6.5%
evere co-morbidity	5	8.1%

Procedural Characteristics

n=70

(74 lesions)

Angiographic success	73	98.6%
Procedural success	65	92.9%
Lesion length, mm	16.5±6.7	
Diameter stenosis, %		
Pre-intervention	87.9 ± 10.0	
Post-intervention	8.7 ± 7.3	
Distal protection device	19	27.1%

n-Hospital outcome

	n=70	
Transient ischemic attack	2	2.9%
Minor stroke	1	1.4%
Major stroke	2	2.9%
Death#	2	2.9%
Myocardial infarction	0	0
Combined events*	5	7.1%

morrhagic transformation in patients with hyperacute ipsilateral hemispheric st ated with IAUK and stenting on 3rd and 11th days after index procedure y stroke, myocardial infarction or death

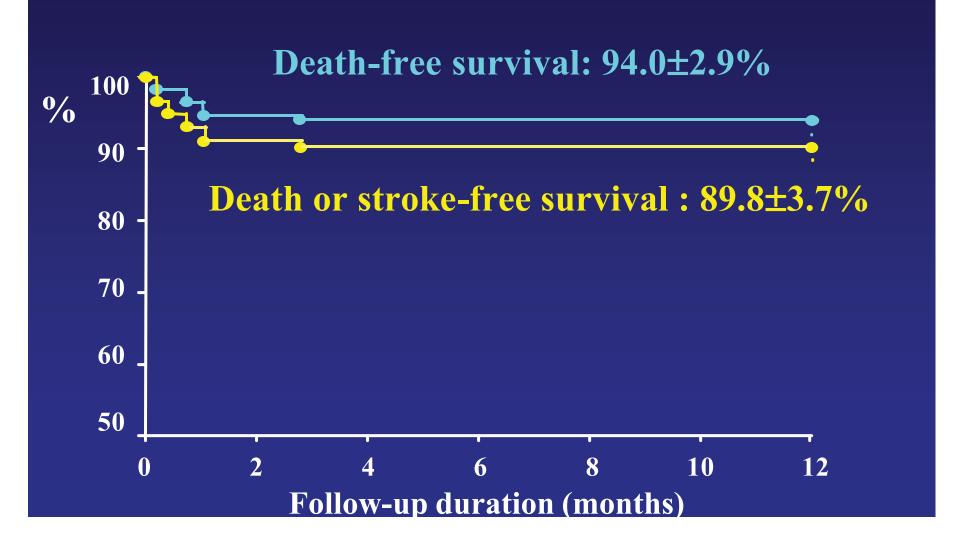
n-Hospital outcome

cute stroke treated with emergency

vascularization)	n=13	
Intra-arterial urokinase	4	30.8%
NIH stroke scale		
Baseline	9.8 ± 5.4	4-17
At discharge	5.3 ± 3.1	0-10
Improved	9	69.2%
Aggravated	2	15.4%
No change	2	15.4%
Hemorrhagic transformation #	2	15.4%
Death #	2	15.4%
Combined events	2	15.4%

morrhagic transformation in patients with hyperacute ipsilateral hemispheric st ated with IAUK and stenting on 3^{rd} and 11^{th} days after index procedure

Clinical Follow-Up Data


	Discharge to 30 days	At 1 yea
ansient ischemic attack	0	0
inor stroke	0	0
ajor stroke	0	0
eath	0	2(3.3%)
Cerebral hemorrhage *	0	1(1.7%)
Jnknown cause #	0	1(1.7%)
ombined event	0	2(3.3%)

At 3.5 months after index procedure

At 1.5 months after index procedure

Event-Free Survival

Mean follow-up duration: 16.2±9.5 monti

CONCLUSION

- Carotid artery stenting appears to be technically feasible and safe, even in high to extreme risk patients with few major complications.
- Carotid artery stenting may be a reasonable alternative to carotid endarterectomy.
- Long-term follow up is necessary to assess the durable effect of carotid artery stenting in these selected high-risk group.