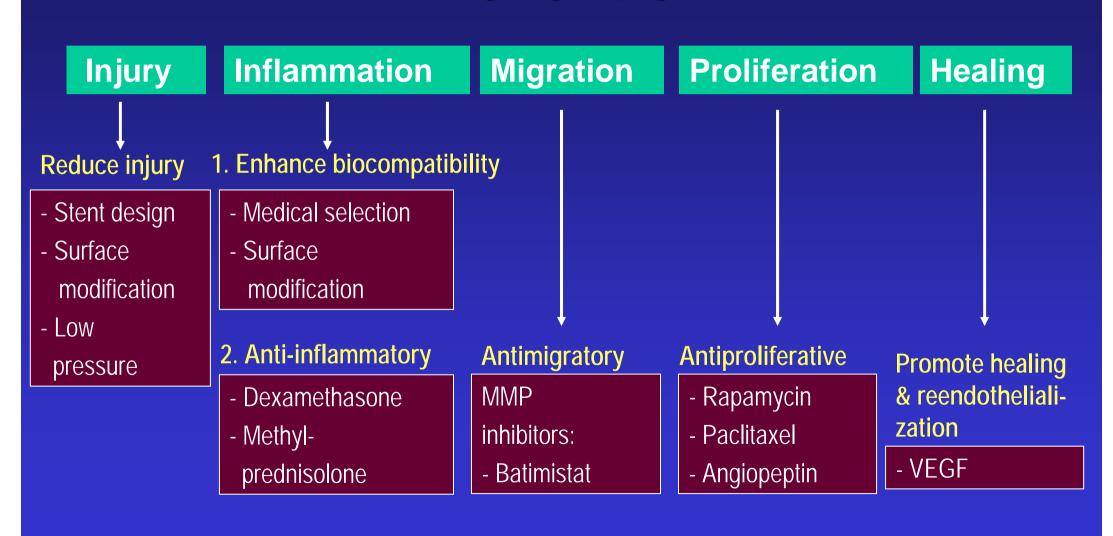

Preventive Effects of Rosiglitazone on Restenosis after Coronary Stenting in Patients with Type 2 Diabetes

Donghoon Choi, MD, PhD
Cardiology Division
Yonsei University College of Medicine,


Background

- 1. Cardiovascular disease is one of the important leading cause of deaths in Type 2 diabetic patients.
- 2. As a result of dramatic increase in implantation numbers, in-stent restenosis has been significant clinical and socio-economic problems.
- 3. The in-stent restenosis rate after coronary stenting has reached up to 45-50 % in type 2 DM patients comparing to 15-25% in non-diabetic patients.
- 4. The most effective treatment modality for in-stent restenosis has not yet identified.

Pathogenesis of Restenosis

Approaches for Restenosis Prevention

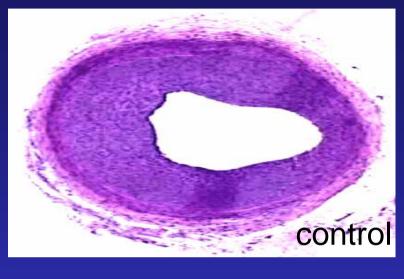
Atherogenic Effects of PPARγ Ligands in the Vasculature

Monocytes

- ↓ Attachment to EC (↓ VCAM)
- ↓ Migration
- ↓ Inflammation
- ReverseCholesterolTransport

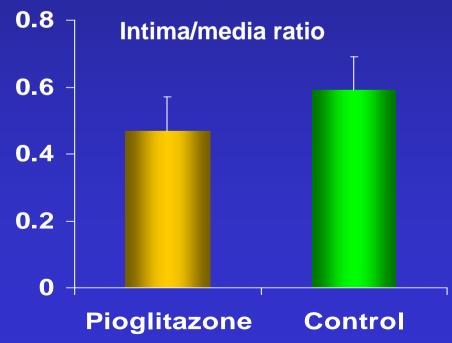
PPARγ Ligands

VSMC

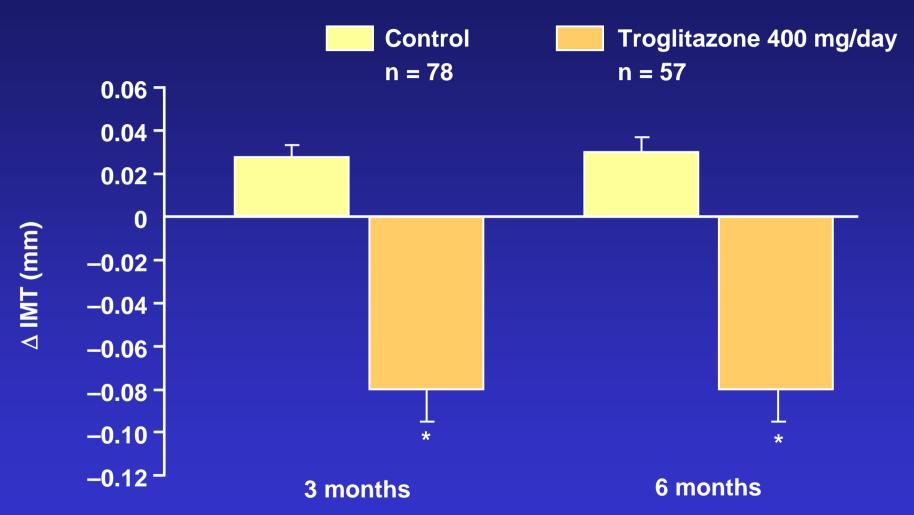

- ↓ Growth
- ↓ Migration
- **↓** MMP production
- ↓ PAI-1
- ↓ Egr-1

Endothelial Cells

- **↓** Growth
- ↓ Migration
- ↓ Angiogenesis



Male OLETF rat, Balloon injury at 16 weeks and pioglitazone for 3weeks



TZDs: effects on carotid arterial intimal and medial complex thickness (IMT) in type 2 diabetes

Error bars = SE

Study Purpose

 To investigate the preventive effect of PPARy agonist, rosiglitazone on restenosis after coronary stenting in type II DM patients.

- Primary endpoint :
 - => 6 month follow-up angiographic binary restenosis rate

Subjects (I)

- Inclusion criteria :
 - Type II DM patients undergoing coronary stenting at YUMC (Nov. 2001 ~ Dec. 2002)
- Exclusion criteria :
 - LVEF < 40% or evidence of CHF
 - GOT/GPT > 2 x upper limit of normal range
 - -Cr > 2.0 mg/DL
 - Previous CABG
 - Primary PTCA

Subjects (II)

- Rosi group : n = 47
 => angiographic follow-up : n = 38
- Control group : n = 48
 => angiographic follow-up : n = 45

Study design and Method

- Prospective, Randomized study
- Anthropometry, Serologic lab: initial and 6 month
- Rosiglotazone: at least 8mg before angiography, and daily 4mg for 6months.
- Control Blood Sugar: continue individual conventional therapy (sulfonylurea, biguanide, insulin)

Baseline Characteristics

	Control	Rosiglitazone	P
No. (male/female)	45 (34/11)	38 (24/14)	NS
Age (years)	59.9±9.3	60.9±9.3	NS
DM duration (years)	7.2±3.8	7.5 ± 4.9	NS
BMI (kg/cm²)	24.8±3.35	24.9 ± 2.96	NS
Fasting glucose (mg/dL)	150.3 ± 28.4	160.3 ± 34.4	NS
HbA1c (%)	7.72±1.13	7.79±1.30	NS
Fasting insulin (μU/mL)	4.97 ± 2.51	5.60 ± 2.70	NS
Total cholesterol (mg/dL)	191.1 ± 48.9	190.5 ± 37.6	NS
HDL-cholesterol (mg/dL)	41.1 ± 10.9	38.9±11.0	NS
Triglyceride (mg/dL)	159.5 ± 55.1	167.7 ± 60.8	NS
Free fatty acid (µmol/L)	580.3 ± 101.7	669.2±127.4	NS
hsCRP (mg/L)	2.01 ± 1.33	2.92±1.98	NS

Medications

	Control	Rosiglitazone	P
Treatments: No. (%)			NS
HMG-CoA reductase inhibitor	37 (88.1)	31 (81.6)	
ACE inhibitors	30 (71.4)	28 (73.7)	
Antiplatelet agents	38 (90.5)	34 (89.5)	
Sulfonylureas	26 (61.9)	25 (65.8)	
Biguanides	22 (52.3)	21 (55.3)	
α-glucosidase inhibitor	15 (35.7)	10 (26.3)	

Choi D, Diabetes Care vol27, 2004

Baseline Angiographic Characteristics

	Control	Rosiglitazone	P
Stented coronary vessels	56	50	NS
LAD	29	29	
LCX	13	8	
RCA	14	12	
Left main		1	
Reference diameter (mm)	3.15 ± 0.49	3.16±0.49	NS
Minimum lumen diameter (mm)	0.65 ± 0.41	0.83±0.57	NS
Diameter stenosis (%)	79.4 ± 12.8	74.4±15.8	NS
Lesion length (mm)	16.48±5.16	19.02±6.09	<0.05

Choi D, Diabetes Care vol27, 2004

Post-stenting Angiographic Data

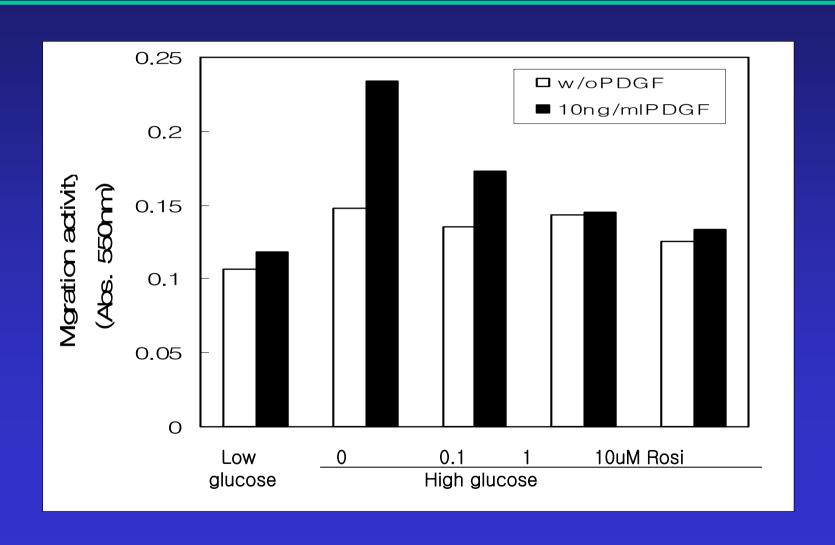
	Control	Rosiglitazone	Р
Stent diameter (mm)	3.24 ± 0.42	3.29 ± 0.41	NS
Stent length (mm)	18.40 \pm 4.75	20.28 ± 5.73	NS
Post-stenting			
MLD (mm)	3.10 ± 0.43	3.13 ± 0.48	NS
Diameter stenosis (%)	2.49 ± 4.26	2.25 ± 4.44	NS
Acute gain (mm)	2.45 ± 0.57	2.30±0.53	NS

Follow-up Biochemical Characteristics

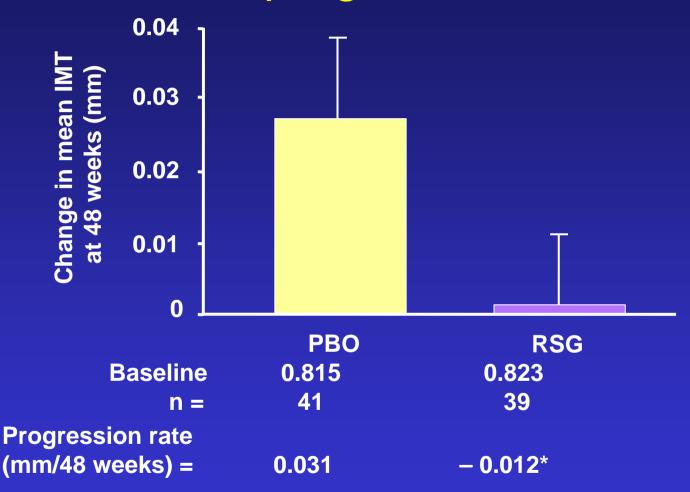
	Control		Rosigl	itazone
	Baseline	FU	Baseline	FU
Fasting glucose (mmol/l)	8.34±1.58	6.87 ± 1.52	8.90±1.91	7.35 ± 1.89
HbA1c (%)	7.72±1.13	7.23 ± 0.93	7.79±1.30	7.17±0.98
Fasting insulin (pmol/l)	35.7 ± 18.0	34.2±18.9	40.2±19.4	34.5 ± 19.7
HDL-cholesterol (mmol/l)	1.06±0.28	1.14±0.27	1.01 ± 0.28	1.12±0.21
Triglyceride (mmol/l)	1.80 ± 0.62	1.43±0.69	1.89±0.69	1.34±0.44
Free fatty acid (µmol/L)	580.3 ± 101.7	548 ± 95.6	669.2±127.4	492.0±101.4
hsCRP (mg/L)	2.01 ± 1.33	1.79 ± 1.22	2.92±1.98	0.62 ± 0.44

Follow-Up Angiographic Data

	Control	Rosiglitazone	P
MLD (mm)	1.91 ± 1.05	2.49±0.88	0.009
Diameter Stenosis (%)	40.60±31.90	23.00 ± 23.40	0.004
Lumen loss (mm)	1.20 ± 0.97	0.65 ± 0.73	0.005
Loss index	0.49 ± 0.42	0.29 ± 0.31	0.014
Restenosis rate (%)	38.2	17.6	0.03


Clinical Follow-Up Data

at 6 months


	Rosi	Control	р
Death	0	0	
MI	1*	0	
Target lesion	3	7	
revascularization			
MACE	3	7	0.25

^{*} MI due to subacute thromosis

The Effects of Rosiglitazone on VSMC migration

Rosiglitazone: effect on carotid IMT progression

IMT = intima-media thickness
Patients with clinically stable coronary artery disease without diabetes
RSG dose 4 mg/day for initial 8 weeks; 8 mg/day for remaining 40 weeks

Error bars = SE

Conclusion

• In this study, rosiglitazone has dramatically reduced restenosis rate of CAOD pateints with coronary stenting in Type 2 diabetes.

 In type 2 diabetes patients with CAOD, using PPAR-γ agonist, not only for glucose lowering and insulin sensitizing effect, but also for antiinflammatory effect, has to be strongly considered.