Update on Carotid Artery Stenting

D. Scheinert, MD

Head, Department of Angiology University of Leipzig – Heart Center & Park Hospital Leipzig, Germany

Carotid Artery Stenosis: The dimension of the problem

- 3rd leading cause of death in US following heart disease and cancer
- Stroke is the primary cause of long-term disability in the Western Europe and US
- 30-40% of these are related to carotid artery disease

Symptomatic patients Medical vs Surgical treatment

NASCET (North-American Symptomatic Carotid Endarterectomy Trial)

Fequency of Carotis-TEA

Number of CEAs and Major Milestones in carotid intervention

Ohki, Morgan Stanley estimates

Indication for CEA

North American Symptomatic Carotid Endarterectomy Trial

- >60% Stenosis of ther ACI in Symptomatic Patients (peri-operative Complication Rate 5-10%)
- 70-99% Stenosis of the ACI in Asymptomatic Patients (peri-operative Complication rate <3%)

Carotid artery stenting (CAS) has emerged as an alternative to surgical endarterectomy (CEA).

Rationale for Carotid Stenting

- Procedure is less invasive and safe
- In Hospital-stay is shorter
- CAS is cost effective
- Patients are happier

- Mortality and Morbidity are lower (?)
- Restenosis rate is lower (?)

Carotid Artery Stenting (CAS)

First FDA Approval Sept.10th 2004

Guidant ACCUNET™ Filter

Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy

(The SAPPHIRE Study) NEJM, 2004;351:1493

Sapphire

>50% stenosis SX

>80% stenosis Asx

One or More Comorbidity Criteria

Physician Team: Neurologist, Surgeon, Interventionalist

Sapphire - Study Death, MI, Stroke at 30 Days

Sapphire Study – 30 day Results

	Stenting	TEA	Р
Death	0,6%	2,0%	0,29
Stroke	3,1%	3,3%	0,94
MI	1,9%	6,6%	0,04
Nerve lesions	0	4,9%	0,004
Hospital stay	1,84	2,85	0,002

SAPPHIRE randomized: 1 year data

Sapphire Study – 1 year Results

	Stenting	TEA	P
Death	7,0%	12,9%	0,08
Stroke	5,8%	7,7%	0,52
Major ipsilateral	0	3,5%	0,02
Repeat revascularization	0,7% 4,6%		0,04
Primary endpoint	12,0%	20,1%	0,048

Developement of Carotis-TEA

Number of CEAs and Major Milestones in carotid intervention

Ohki, Morgan Stanley estimates

Developement of Carotis-TEA

World Wide Carotid Procedures

Morgan Stanley, BSC, estimates

Selfexpanding Stents for CAS

Carotid-Wallstent Stainless-steel Nitinol-Stents Nickel / Titanium - alloy

Selection of the Stent

Vessel-Wall Alignement of Stents

Acculink (Guidant)

NexStentTM MonorailTM (B.S.)

- Nitinol-stent
- Closed-cell design
- 5F system
- 1 stent for vessel-diamete

 $4 - 9 \, \text{mm}$

- CABERNET NexStent clinical trial
 - 488 patients
 - 30-MAE: 3,8 % (stroke, MI, death)
 - After 1 year no restenosis

Neurological complication during carotid angioplasty

Baseline

Critical 80%, irregular stenosis of LICA in asymptomatic patient.

After Stent

Thrombotic occlusion of side branch of median artery.
Transient hemianopsia, persistent aphasia

Filter - Protection Systems

 Maintained antegrade flow during intervention

 Passage of the stenosis before neuroprotection

Filter Protection

Ohki T et al. - J Vasc Surg - 1999;30:1034-44

Cerebral Protection with MoMa

- 1st Choice in High Embolic Risk Lesions
 - Fresh thrombus lesions
 - Soft ulcerated plaques
 - Long, sub-occlusive lesions
 - Diffuse diseased ICAs
 - Friable, unstable plaque by
 - · Echo Doppler and angiographic findings
 - Recent, recurrent symptoms (i.e. patients with "stuttering" TIAs)

- Recommended Choice in Severe Anatomical Complexity
 - Difficult to access ICAs due to very angulated ICA-CCA take-off and tortuous ICAs
 - Lack of a suitable ICA's landing zone for distal protection

PRIAMUS Registry – Patient Demographics

"PRoximal Endovascular Flow Blockage for Cerebral Protection
During CArotid Stenting: Results from a MUlticenter Italian
RegiStry"*

Patients	416
Symptomatic Patients %D.S. > 50%	264 (63,5%)
Asymptomatic Patients %D.S. > 70%	152 (36.5%)
Mean %D.S. diameter stenosis	80.03% ± 9.8
Mean age (300 men/ 116 women)	71.6y ± 9
Lesion characteristics/ morphologies Lesion length > 1.5 mm De novo lesions Ostial lesions Heterogeneous soft Restenotic, calcified	297 (71.4%) 401 (96.0%) 273 (65.6%) 211 (50.7%) 15 (3.6%)

PRIAMUS Registry – Procedural Data

"PRoximal Endovascular Flow Blockage for Cerebral Protection
During CArotid Stenting: Results from a MUlticenter Italian
RegiStry"*

Protection successfully established	414 (99.5%)
Intolerance to Flow Blockage	24 (5.7%)
Resolved by intermittent balloon deflation	7
Using different protection device	5
Mean flow blockage time	4.91 min. ± 1.1
Mean back pressure	50.8 mmHg ± 7.5
Evidence of macroscopic debris	245 (58.9%)
Stent placement and postdilation	416 (100%)

PRIAMUS Registry - outcome/complication

"PRoximal Endovascular Flow Blockage for Cerebral Protection

During CArotid Stenting: Results from a MUlticenter Italian

RegiStry"*

	In hospital	Discharge to 30d FU.	
TIA	3 (0.74%)	4 (1.68%)	
Non fatal strokes			
Minor Stroke	16 (3.84%)	0	
Major Stroke	1 (0.24%)	0	
Death	2 (0.48%)	0	
All Stroke and Death Rate	19 (4.56%)	0	

No Fatal Stroke and no Myocardial Infarction was recorded.

Overview on 30-Day Composite Endpoints in CAS Trials

Detection of Microembolic Signals

MO.MA versus Filter-Protection Mean MES - Count

MO.MA- versus Filter-Protection MES - Count during Stent-Deployment

MO.MA- versus Filter-Protection MES - Count during Balloon-Dilatation

Removal of the Protection-System and MES - Count

CONCLUSIONS

Neuroprotection mandatory for CAS ?

YES

 Proximal Flow Blockage with Endovascular Clamping is not a must, but......

the best solution in more then 85 %

