Coronary Physiology and Imaging Summit February 10th, 2007, Seoul, Korea

Physiologic Study and PCI

William F. Fearon, M.D. Assistant Professor Division of Cardiovascular Medicine Stanford University Medical Center

Conflict of Interest

• No conflict of interest relevant to this talk

Why do we need physiology?

- Limitations of coronary angiography
- Limitations of noninvasive techniques
- Potential downside to indiscriminate DES use
- Cost issues

Why do we need invasive techniques?

- Limitations of coronary angiography – "Lumenogram"
 - Disconnect between angiography and physiology

Limitations of Angiography:

Why do we need physiology?

- Limitations of coronary angiography
- Limitations of noninvasive techniques
 - Often not performed
 - Can be inaccurate in multivessel disease
 - Generally "territory" specific, but not "vessel" specific
 - Can be "vessel" specific, but not "lesion" specific

Limitations of Noninvasive Imaging:

143 Patients with angiographically significant 3 vessel disease (> 70% diameter stenosis)

Thallium Scan Finding	% Patients
No Defect	18%
Single Vessel Pattern	36%
Two Vessel Pattern	36%
Three Vessel Pattern	10%

Lima et al. J Am Coll Cardiol 2003;42:63-70

FFR-Guided PCI in MVD

- 74 year old woman with HTN, hyperlipidemia, diabetes and atrial fibrillation
- Admitted with ACS and ruled out
- Stress thallium revealed inferior and lateral reversible ischemia

Nuclear Perfusion Scan

Inferolateral Ischemia

FFR of the RCA

FFR/CFR/IMR of the RCA

Stanford

FFR Left Circumflex

Pullback in Circumflex

After "spot-stenting" proximal circumflex

FFR after Stenting

Circulation 2001;104:1917-1922

FFR after Stenting

FFR-post-STENT Registry (N =750) % ADVERSE EVENTS AT 6 MONTHS

Pijls et al., Circulation 2002;105:2950-2954

Follow-up Nuclear Perfusion Scan

No more inferolateral ischemia

(fixed anterior defect secondary to breast attenuation)

Why do we need physiology?

- Limitations of coronary angiography
- Limitations of noninvasive techniques
- Potential downside to indiscriminate DES use

Late Thrombosis 15 Months after DES

Drug-eluting stents: The "clot" thickens

DEFER Study: 5 Year Death/MI

Pijls NHJ (Personal Communication)

Stanford

Danger of Deferring PCI if FFR < 0.75

Chamuleau et al. Am J Cardiol 2002;89:377-380

FFR-Guided PCI in MVD

137 Patients, Non-Randomized

Wongpraparut et al. Am J Cardiol 2005;96:877-884.

FFR vs. Angiography for Multivessel Evaluation (F.A.M.E. Study)

- Multicenter, international, randomized study including 10 European and 6 U.S. sites.
 - Co PIs: Nico Pijls (Europe) and Bill Fearon (U.S.)
- Compare an angiography-guided strategy to PCI with DES in MVD to an FFR-guided strategy

FFR vs. Angiography for Multivessel Evaluation (F.A.M.E. Study)

Why do we need physiology?

- Limitations of coronary angiography
- Limitations of noninvasive techniques
- Potential downside to indiscriminate DES use
- Cost issues

FFR is Cost Effective

	Total Cost	QALYs*	Cost / QALY Gained
NUC Strategy	\$13,190	14.7962	
FFR Strategy	\$11,395	14.7940	
Difference	\$1,795	0.0022	\$808,000
STENT Strategy	\$15,225	14.7761	
FFR Strategy	\$11,395	14.7940	
Difference	\$3,830	- 0.0179	FFR Dominates

Cost Effectiveness of FFR: Clinical Validation

Endpoints: clinical outcome, duration/cost of hospitalization

Leesar et al. JACC 2003;41:1115-21

Cost-Effectiveness of FFR

Leesar et al. JACC 2003;41:1115-21

FFR strategy resulted in similar outcomes

Table 3. Follow-Up and Clinical I	Events Group 1 (SPS)	Group 2 (FFR)
	(n = 34)	(n = 34)
Average follow-up (months)	12.0 ± 0.8	14.0 ± 1.0
Death	0	0
Angina		
No angina (n)	17	24
CCS classification of angina (n)		
1–2	17	10
3–4 (admitted to the hospital)	6	5
Stress perfusion scintigraphy	4	4
Negative (n)	4	4
Cardiac catheterization	2	3
Results (no change)	2	2
Disease progression	9	1
MI	1	1
CABG including target vessel	1	2
PCI	0	0

Leesar et al. JACC 2003;41:1115-21

Summary

- We need coronary physiology to help guide decision-making in the catheterization lab
 - Limitations of angiography
 - Limitations of noninvasive evaluation
 - Avoid indiscriminate DES use
 - Cost effective

