

Preliminary Two-Year Outocome After Sirolimus-eluting Stent Implantation The j-Cypher Registry Update

Takeshi Kimura MD. Kyoto University Hospital
Takeshi Morimoto MD. Kyoto University Hospital
Kazuaki Mitsudou MD. Kurashiki Central Hospital
Masakiyo Nobuyoshi MD. Kokura Memorial Hospital
on behalf of the j-Cypher Registry Investigators

Baseline Characteristics

2005	j-CYPHER	e-CYPHER	P Value
	N=6816	N=15157	
Age	68 <u>+</u> 10	62 <u>+</u> 11	0.0001
<i>> 80 y.o</i> .	12 %	4 %	0.0001
Male	75 %	78 %	0.0005
Diagnosis			0.0001
Stable Angina	51 %	42 %	
UAP / NSTEMI	15 %	33 %	
STEMI	8 %	13 %	
Silent Ischemia	/ OMI 21 %	10 %	
Coronary Stenos	is 5%	3%	
Off-label Use	76%		

Urban P, et al. Circulaion. 2006;113:1434-1441.

Ker

Baseline Characteristics

j-CYPHER e-CYPHER P Value N=6816 N=15157

Prior PCI	49 %	29 %	0.0001
Prior CABG	8%	11 %	0.0001
Multi-vessel Disease	55 %	57 %	0.0001
Unprotected LMCA	4 %	<i>N.A</i> .	
Diabetes	44 %	29 %	0.0001
On Insulin	10 %	10 %	1.0
CKD (CCr < 60)	50 %	<i>N.A</i> .	
Hemodialysis	5 %	<i>N.A</i> .	
Hx of Heart Failure	12 %	<i>N.A</i> .	
PVD	12%	7%	0.0001
Hx of Stroke	8 %	3%	0.0001

Two-Year Event Rate in j-Cypher Target Lesion Revascularization

Fate of Restenosis of Cypher

Second Target Lesion Revascularization

Fate of Restenosis of Cypher

Second Target Lesion Revascularization

Estimation in 444 lesions undergoing successful PCI for Cypher RES

Follow-up interval after 1st TLR (Days)

Stent Thrombosis in j-Cypher

Cumulative Incidence of Stent Thrombosis

Wenaweser P., ESC 2006, Oral Presentation #1012

Landmark Analysis of Duration of Dual Anti-platelet Thrapy in j-Cypher

Comparison Between BMS and SES Using Historical Control

CREDO-Kyoto Registry 9873 pts

CABG

j-Cypher Registry Current Analysis 6816 pts

PCI without stent

STEMI

PCI using BMS 5627 pts

Comparison Between BMS and SES Using Historical Control

CREDO-Kyoto versus j-Cypher

Baseline characteristics

	CREDO	j-Cypher	p Value
N	5627	2767	
Age	67.5±10.1	68.0±10.5	0.02
≧ 80 yrs	11%	12%	0.09
Emergency	5.8%	8.1%	0.03
Diabetes	36%	41%	0.0001
Hemodialysis	3.4%	5.2%	0.0001
CCr < 60	39%	49%	0.0001
EF < 40%	6.5%	8.3%	0.0002
Target LMCA	2.0%	4.7%	0.0001
N of target vessels	1.32±0.55	1.34±0.59	0.33
Statin at discharge	32%	43%	0.0001

Comparison Between BMS and SES Using Historical Control CREDO-Kyoto versus j-Cypher All-cause Mortality

Comparison Between BMS and SES Using Historical Control CREDO-Kyoto versus j-Cypher All-cause Mortality in Diabetic Patients

Comparison Between BMS and SES Using Historical Control CREDO-Kyoto versus j-Cypher

Follow-up interval (Days)

Comparison Between BMS and SES Using Historical Control CREDO-Kyoto versus j-Cypher Target Lesion Revascularization

Follow-up interval (Days)

Summary

Preliminary Two-year Result from the j-Cypher Registry suggests

- Efficacy of SES in preventing clinical restenosis was clearly demonstrated in the real world clinical practice in Japan. However, repeated TLR after TLR for restenosis of SES is not uncommon. Regarding the strategy of TLR for restenosis of SES, placement of additional Cypher[™] stents seemed to be associated with less repeated TLR as compared with non-stent strategies.
- 2. Stent thrombosis rate up to 2 years under Ticlopidine anti-platelet regimen in Japan seemed to be lower as compared with those reported from other registries in the real world, despite the fact that high risk patients such as diabetes and CKD were more prevalent in the j-Cypher registry.

Summary

Preliminary One-year Result from the j-Cypher Registry suggests

4. Extended dual anti-platelet therapy beyond 6 months as compared to discontinuation of thienopyridine within 6 months did not have favorable effect on the incidence of death / MI.

5. Compared to a historical control of BMS, PCI using SES in the j-Cypher registry was associated with similar mortality, less myocardial infarction, and strikingly less TLR at 1 year, despite prevalence of more morbid patients such as diabetes, CKD, elderly, and left main stenting in the SES group.