Imaging and Physiology Summit November 22nd, 2008

FFR-Guided PCI

William F. Fearon, M.D. Assistant Professor Division of Cardiovascular Medicine Stanford University Medical Center

- Limitations of coronary angiography
- Limitations of noninvasive techniques
- Downside to indiscriminate stenting
- Identifying and treating ischemia is critical
- It may increase number of PCI-eligible patients

- Limitations of coronary angiography – "Lumenogram"
 - Disconnect between angiography and physiology

Limitations of Angiography:

Limitation of Angiography Comparison of QCA to FFR in over 3,000 lesions

Courtesy of Bernard De Bruyne, MD, PhD

- Limitations of coronary angiography
 - "Lumenogram"
 - Disconnect between angiography and physiology
- Limitations of noninvasive techniques
 - Not performed, inaccurate in multivessel disease
 - Generally "territory" specific, not "vessel" specific
 - Can be "vessel" specific, but not "lesion" specific

Limitations of Noninvasive Imaging:

143 Patients with angiographically significant 3 vessel disease (> 70% diameter stenosis)

Thallium Scan Finding	% Patients
No Defect	18%
Single Vessel Pattern	36%
Two Vessel Pattern	36%
Three Vessel Pattern	10%

Lima et al. J Am Coll Cardiol 2003;42:63-70

Limitations of Noninvasive Imaging:

58 patients with MVD (>50% angiographic stenosis)

Enderst - COLARS		TAACT		1314	1131
Extent of CAD		DASE		DMIBI	
	Sensitivity % (n)		Specificity % (n)	Sensitivity % (n)	Specificity % (n)
Multivessel disease by	abnormalities in multiple	vascular territories			
All Patients	72 (42/58)		95 (119/125)*	66 (38/58)	76 (95/125)
No CAD			100 (64/64)*		88 (56/64)
Single-vessel CAD			90 (55/61)*		64 (39/61)
Single-vessel RCA			83 (25/30)		60 (18/30)
Single-vessel LAD			94 (17/18)*		61 (11/18)
Single-vessel LCX			100 (13/13)		77 (10/13)
Multivessel CAD	72 (42/58)			66 (38/58)	
Two-vessel CAD	68 (27/40)			58 (23/40)	
LCX & RCA	71 (12/17)			65 (11/17)	
LAD & RCA	75 (12/16)			50 (8/16)	
LAD & LCX	43 (3/7)			57 (4/7)	
Three-vessel CAD	83 (15/18)			83 (15/18)	

 Stress echo had a 72% sensitivity (as low as 43% for LAD and L Cx disease)

Smart et al. J Am Coll Cardiol 2000;36:1265-1273

FFR vs. Nuclear Perfusion Scan in MVD

36 patients with multivessel CAD

Discordance occurred in 31% of vessels / territories, predominantly because of a low FFR and normal nuclear result

Ragosta et al. Am J Cardiol 2007;99:896-902

FFR Left Circumflex

Pullback in Circumflex

After "spot-stenting" proximal circumflex

- Limitations of coronary angiography
 - "Lumenogram"
 - Disconnect between angiography and physiology
- Limitations of noninvasive techniques
 - Not performed, inaccurate in multivessel disease
 - Generally "territory" specific, not "vessel" specific
 - Can be "vessel" specific, but not "lesion" specific
- Downside to indiscriminate stenting

Cardiac Death and MI After 5 Years

Relationship between DES Length and Thrombosis Rate

Thrombosis rate (%)

Moreno et al. J Am Coll Cardiol 2005;45:954-9

Relationship between DES Number and Thrombosis Rate

	, ·		
Variable	Regression Equation	R	p Value
% of patients with diabetes	Y = 0.694 + 0.0004 X	0.098	0.994
Use of glycoprotein IIb/IIIa	Y = 0.483 + 0.022 X	0.663	0.101
% of IVUS guidance	Y = 0.556 - 0.002 X	0.269	0.751
Lesion length	Y = -1.681 + 0.208 X	0.632	0.070
Stented length	Y = -1.455 + 0.121 X	0.716	0.031
Stented /lesion_length	Y = -1.432 + 1.348 X	0.380	0.329
Number of stents per patient	Y = -1.765 + 2.080 X	0.752	0.020
RVD	Y = 6.924 - 2.238 X	0.526	0.152
MLD post-procedure	Y = 3.196 - 0.916 X	0.344	0.384
% stenosis post-procedure	Y = 0.777 - 0.009 X	0.123	0.848
Duration of clopidogrel therapy	Y = 0.702 - 0.0002 X	0.098	0.999

Number of stents per patient: R = 0.75, p = 0.02

Moreno et al. J Am Coll Cardiol 2005;45:954-9

- Limitations of coronary angiography
 - "Lumenogram"
 - Disconnect between angiography and physiology
- Limitations of noninvasive techniques
 - Not performed, inaccurate in multivessel disease
 - Generally "territory" specific, not "vessel" specific
 - Can be "vessel" specific, but not "lesion" specific
- Downside to indiscriminate stenting
- Identifying and treating ischemia is critical

Importance of Revascularization when Ischemia is Present

Nuclear perfusion scans performed in > 5000 patients

Hachamovitch et al. Circulation 1998;97:535-543

Danger of Deferring PCI if FFR < 0.75

97 patients with intermediate lesions and normal NPS all treated medically

Chamuleau et al. Am J Cardiol 2002;89:377-380

Danger of not Heeding FFR Result

71 patients in whom FFR was ignored: 34 deferred despite FFR < 0.80

37 stented despite FFR > 0.80

	Non-compliance group ($n = 71$)		Compliance grou	p (<i>n</i> = 336)
	No revasc $(n = 34)$	Revasc $(n = 37)$	No revasc (n = 237)	Revasc (<i>n</i> = 99)
Clinical events Death Acute coronary syndromes Vessel revascularization	7/34 (21%) 2/34 (6%) 2/34 (6%) 3/34 (9%)	4/37 (11%) 1/37 (3%) 1/31 (3%) 2/37 (5)	14/237 (7%) 3/237 (1%) 2/237 (1%) 9/237 (4%)	6/99 (6%) 0/99 0/99 6/99 (6%)
		P=0.	01	
Legalery et al. Eur Heart J 2	2005;26:2623-262	9	Star	ford

COURAGE Nuclear Substudy

Comparison of death/MI in patients with mod-severe pre-treatment ischemia based on whether or not ischemia was relieved

Shaw et al. Circulation 2008;117:1283

- Limitations of coronary angiography
 - "Lumenogram"
 - Disconnect between angiography and physiology
- Limitations of noninvasive techniques
 - Not performed, inaccurate in multivessel disease
 - Generally "territory" specific, not "vessel" specific
 - Can be "vessel" specific, but not "lesion" specific
- Downside to indiscriminate stenting
- Identifying and treating ischemia is critical
- It may increase number of PCI-eligible patients

FFR-guided PCI in MVD

- 150 patients with MVD referred for CABG
- If FFR < 0.75 in all 3 vessels or 2 including the proximal LAD then CABG (87 patients)
- Otherwise PCI performed (63 patients)

TABLE II. Angiographic Characteristics of the Culprit (FFR \leq 0.75) and Nonculprit Stenoses (FFR > 0.75)			
	$FFR \leq 0.75$	FFR > 0.75	Р
n	259	101	
RD	2.78 ± 0.51	2.85 ± 0.54	0.23
% stenosis	54 ± 12	53 ± 10	0.77
MLD	1.27 ± 0.45	1.35 ± 0.42	0.09

Botman et al. Cathet Cardiovasc Intervent 2004;63:184-191

FFR-guided PCI in MVD

Similar event rate between FFR-guided PCI and CABG

Botman et al. Cathet Cardiovasc Intervent 2004;63:184-191

FFR-guidance may PCIs Death and MI in the COURAGE study

Boden et al., New Engl J Med 2007;356:1503-16.

Final reason to adopt an FFR-guided strategy

Results of the FAME study:

- 1. Improved outcomes
- 2. Decreased cost
- 3. Less contrast use
- 4. Similar procedure time

AngioFFR\$6,007vs\$5,332, p<0.001</td>302 mlvs272 ml, p<0.001</td>70 minvs71 min, p=0.51

