Impact of Diabetes on Iong-term outcomes of DES in Asian patients

Seung-Jung Park, MD, PhD,

Professor of Internal Medicine Asan Medical Center, Seoul, Korea

Diabetes ; Different Disease Pattern

Characteristics of Coronary Artery Disease (CAD) in Diabetics

- Small vessel caliber (impaired remodeling or diffuse atherosclerosis)
- High incidence of multi-vessel disease
- High incidence of left main stem disease
- Complex lesion morphology; total occlusion
- Poor collateral development
- Increased coronary calcification

Diabetic patients tend to have a more aggressive form of CAD compared to non-diabetics

PCI in Diabetic Patients Why is it problem ?

- Diabetic patients are prone to a diffuse and rapidly progressive form of atherosclerosis.
- A host of unfavorable pathophysiologic and anatomical features in diabetic patients contributed to worse outcomes
- Bypass surgery is the preferred revascularization strategy, because of increased risk of mortality and/or TLR rate after PCI in diabetic patients in the era of BMS.
- Drug-eluting stents (DES) markedly reduced restenosis and TLR compared with BMS, however we need more data for patients with diabetes.

Diabetes ; Treatment

Medical vs. PCI vs. CABG in stable multi-vessel CAD (n=611pts) MASS II RCT

Soares, PR et al. Circulation 2006; 114:I420

CVRF CardioVascular Research Foundation

*PCI = BMS era

MASS II Study: Revascularization in Diabetics

- For diabetic subjects, percutaneous or surgical revascularization was associated with a protective effect compared with medical treatment, significantly decreasing the risk of death after 1 year and up to 5 years.
- Therefore, aggressive invasive revascularization should be considered in diabetic patients to improve long-term outcomes

Diabetes ; PCI vs CABG

Mortality in Diabetics Data from ARTS Trials (n=208); Multivessel Disease study

Diabetes ; PCI (BMS)

Risk of Restenosis in BMS

Diabetic vs Nondiabetic Patients

MACE (Death, MI, TLR) free Survival

Kastrati A, et al. JACC 1998;32:1866

Diabetes ; PCI (DES)

CYPHER Trials Meta-Analysis in Diabetes

RAVEL, SIRIUS, E-SIRIUS, C-SIRIUS, DIRECT, SVELTE

Abizaid et al. Angioplasty Summit 2005

TAXUS Trials Meta-Analysis in Diabetes

TAXUS II, IV, V, VI

Stone GW et al. Angioplasty Summit 2005

Impact of DM on Restenosis after DES Implantation

Matched comparison (192: 192)

Risk of Restenosis in DES

Diabetic vs Nondiabetic Patients

Multivariate Predictors of In-Segment Restenosis after SES

	OR	95% CI	р
ISR	4.16	1.63-11.01	< 0.01
Ostial lesion	4.84	1.81-12.07	< 0.01
Diabetes	2.63	1.14-6.31	0.02
Stent length	1.42	1.21-1.68	< 0.01
Ref diameter	0.46	0.24-0.87	0.03
LAD	0.30	0.10-0.69	< 0.01

Lemos PA et al. Circulation 2004;109:1366-1370

Higher MACE in Diabetics after SES

6-month follow-up

Impact of diabetes mellitus on long-term outcomes in the drug-eluting stent era

Raisuke Iijima, MD, Gjin Ndrepepa, MD, Julinda Mehilli, MD, Christina Markwardt, MD, Olga Bruskina, MD, Jürgen Pache, MD, Maryam Ibrahim, MD, Albert Schömig, MD, and Adnan Kastrati, MD *Munich, Germany*

Prospective database of 2557 patients in 2 centers : Diabetes (n=727) vs. Non-diabetes (n=1830)

Am Hear J 2007;154:688-93

Angiographic and clinical restenosis (TLR)

Impact of diabetes mellitus on long-term outcomes in the drug-eluting stent era

Prospective database of 2557 patients in 2 centers, Diabetes (n=727) vs. Non-diabetes (n=1830)

Raisuke Lijima, Am Hear J 2007;154:688-93

Significant difference in rates of deaths from both cardiovascular and noncardiovascular cause in Diabetic patients at 4 year F/U

Pooled analysis of 1748 patients in 4 RCTs comparing SES with BMS (Pivotal SES Trials: RAVEL, SIRIUS, E-SIRIUS, C-SIRIUS)

Christian Spaulding, NEJM 2007;356:989-97

Independent predictors of stent thrombosis

Incidence, Predictors, and Outcome of Thrombosis After Successful Implantation of Drug-Eluting Stents

•Diabetes (HR 3.71, 95% CI, 1.74–7.89).

JAMA 2005;293:2126-2130

Early and late coronary stent thrombosis of sirolimuseluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study

Joost Daemen, Peter Wenaweser, Keiichi Tsuchida, Linda Abrecht, Sophia Vaina, Cyrill Morger, Neville Kukreja, Peter Jüni, Georgios Sianos, Gerrit Hellige, Ron T van Domburg, Otto M Hess, Eric Boersma, Bernhard Meier, Stephan Windecker, Patrick W Serruys

•Diabetes (HR 2.03, 95% CI, 1.07–3.83).

Lancet 2007;369: 667–78

General Concerns about Diabetic Influence in Patients Undergoing PCI with DES

Still higher restenosis rate and MACE in diabetics compare to non-diabetics
Higher mortality after PCI with DES ?
Higher incidence of stent thrombosis ?

Any Differences of Long-term Clinical Outcomes after DES Implantation in Asia vs. Western ?

AMC Data

Impact of DM on Restenosis after DES Implantation

1126 Cypher lesions and 308 Taxus lesions

All-Cause Mortality

Park et al. JACC: Cardiovascular Interventions 2008

Incidence of Angiographic ST

Incidence of ST (Definite+Probable)

Impact of Diabetes All-Cause Mortality

Independent risk factors of ST -Multivariate Analysis-

Bern / Rotterdam

- Acute coronary syndrome
- Diabetes

AMC Registry

- Lower EF
- Renal failure
- Stent length

Mostly, clinical factors are involved in risk of ST. However, diabetes is not independent predictor of ST in AMC registry data.

Comparison of Mortality and ST between Asian and Western Area

Summary

- Incidence of ST and all-cause mortality of Asian registry was similar to those of RCT, but lower than results of western registry
- Important predictors of ST was mainly due to clinical factors.
- Impact of diabetes on the long-term outcomes in Asia was very modest, compared to the features from Western data.

AMC Registry

Prognostic Influence of Diabetes Mellitus on Long-Term Clinical Outcomes and Stent Thrombosis Following DES Implantation in Asian Patients

Overall 3160 patients: Diabetes (n=865) vs. Non-diabetes (n=2295) during 3-year follow-up.

Outcomes of study

Primary end-point ; Composite of death, nonfatal MI, or TVR

Secondary end-points ; Death, MI, TLR, TVR, and stent thrombosis (ARC criteria)

Baseline characteristics

Variable	Diabetes (n=865)	Non-diabetes (n=2295)	Р
Age (years)	62.7±9.1	59.7±10.6	<0.001
Female	312 (36.1)	619 (27.0)	<0.001
Hypertension	533 (61.6)	1066 (46.4)	<0.001
Lipid profiles			
Total cholesterol (mg/dl)	178.2±53.3	172.2±48.5	0.003
Triglyceride (mg/dl)	161.2±102.8	147.0±93.5	0.005
HDL cholesterol (mg/dl)	41.9±17.3	43.2±15.1	0.10
Current smoking	201 (23.2)	719 (31.3)	<0.001
Renal failure	50 (5.8)	30 (1.3)	<0.001
Previous myocardial infarction	99 (11.4)	198 (8.6)	0.02
Previous coronary angioplasty	161 (18.6)	383 (16.7)	0.20
Previous coronary artery bypass graft	31 (3.6)	53 (2.3)	0.05

Baseline characteristics

Variable	Diabetes (n=865)	Non-diabetes (n=2295)	Р
Clinical indication			<0.001
Stable angina	450 (52.0)	1074 (46.8)	
Unstable angina	334 (38.6)	865 (37.7)	
Myocardial infarction	81 (9.4)	356 (15.5)	
Multivessel disease	585 (67.6)	1280 (55.8)	<0.001
Left ventricular ejection fraction (%)	57.9±9.3	58.6±8.7	0.04
Medications at discharge			
Warfarin	10 (1.2)	21 (0.9)	0.54
Statin	498 (57.6)	1240 (54.0)	0.07
β-Blocker	631 (72.9)	1629 (71.0)	0.28
Calcium Channel Blocker	417 (48.2)	1129 (49.2)	0.62
ACE inhibitor	536 (62.0)	1271 (55.4)	0.001

Baseline characteristics

		Non-	
Variable	Diabetes	diabetes	D
Vanable	(11=000)	(11=2295)	Γ
Treated lesions, No.	1301	3190	
Left anterior descending artery	637 (49.0)	1579 (49.5)	0.74
Left main artery	83 (6.4)	224 (7.0)	0.44
Lesion Characteristics			
ACC/AHA type B2 or C lesion	1008 (77.5)	2330 (73.0)	0.002
Ostial	84 (6.5)	271 (8.5)	0.02
Bifurcation	236 (18.1)	501 (15.7)	0.05
Total occlusion	70 (5.4)	181 (5.7)	0.70
Restenotic lesion	68 (5.2)	183 (5.7)	0.50

Procedural characteristics

Variable	Diabetes (n=865)	Non-diabetes (n=2295)	Р
Treated lesions, No.	1301	3190	
Direct stenting	174 (13.4)	553 (17.3)	0.001
IVUS guidance	798 (61.3)	2099 (65.8)	0.01
DES type			0.06
Sirolimus-eluting stent	976 (75.0)	2478 (77.7)	
Paclitaxel-eluting stent	325 (25.0)	712 (22.3)	
Number of stents per patient	2.1±1.2	1.8±1.1	<0.001
Total stent length per patient (mm)	53.5±33.3	46.0±29.8	<0.001
Average stent diameter per patient (mm)	3.1±0.3	3.2±0.3	<0.001
Use of Glycoprotein IIb/IIIa inhibitors	24 (2.8)	69 (3.0)	0.73

Composite of Death, MI, or TVR

Stent Thrombosis

Adjusted HRs of Clinical Outcomes Diabetic vs. Non-diabetics

Outcome	HR	95% CI	Р
Death	1.35	0.89-2.05	0.16
MI	1.08	0.78-1.50	0.63
TLR	1.06	0.78-1.43	0.71
TVR	1.37	1.04-1.81	0.03
Death/MI	1.18	0.92-1.53	0.20
Death/MI/TVR	1.24	1.02-1.51	0.03
Stent thrombosis			
Definite	0.62	0.20-1.84	0.41
Definite/probable	0.87	0.37-2.06	0.77
Any	1.14	0.69-1.99	0.64

Non-diabetes vs. Non-insulin-treated diabetes

CVRF CardioVascular Research Foundation

Non-diabetes vs. Insulin-treated diabetes

		Adjusted HR (95% CI)	P value	
Death		2.77 (1.55-4.95)	0.001	
MI		1.01 (0.54-1.89)	0.97	
TLR ⊢	- - -1	1.36 (0.77-2.39)	0.29	
TVR	⊢_ ●	1.72 (1.02-2.88)	0.04	
Death or MI	⊢●	1.66 (1.09-2.53)	0.02	
Death, MI, or TVR	⊢●⊣	1.65 (1.17-2.32)	0.004	
ST (definite or probable) ⊢	1	0.99 (0.20-4.92)	0.99	
ST (any ARC criteria) ⊢		1.75 (0.77-3.96)	0.20	
0.1 1 10 Adjusted Hazard <u>Ratio (95% CI)</u>				
Cype CardioVascular Research Foundation	CardioVascular Research Foundation Asan Medical Center		dical Center	

AMC Registry

Summary: Diabetic Impact in Asian Patients

- The overall mortality rate was similar in diabetic and non-diabetic patients
- Diabetic patients have a higher incidence of TVR, without a significantly increased rate of TLR
- There was no significant association between increased risk of stent thrombosis and diabetes, whether insulin-dependent or not
- Insulin-treated diabetes was independently associated with increased risk of death and TVR

Impact of Diabetes on DES outcomes ; All DESs Are Equally Effective?

Early or Mid-Term OutcomesLong-Term Outcomes

Diabetes ; CYPHER vs. TAXUS

ISAR-DIABETES Trial

Late Lumen Loss

Re-stenosis

Kastrati et al., NEJM 2005;353:663-70

ISAR-DIABETES Trial

There was a trend towards a reduction in TLR (p=0.13)

Kastrati et al., NEJM 2005;353:663-70

In-stent late loss

In-segment restenosis

TLR at 9 to 12 months

SES vs. PES

Long-term Clinical outcomes

SES vs. PES

Two-year outcomes

- RESEARCH and T-SEARCH } REGISTRY
- SIRTAX subgroup analysis
- DECLARE-DIABETES

RANDOMIZED STUDY

Four-year outcomes

Network meta-analysis

Adjusted Hazard Ratios for 2-year Outcomes Comparing PES and SES

Adjustment with propensity score

Daemen J et al., Eur H Journal 2008;28:26-32

RESEARCH & T-SEARCH

RESEARCH & T-SEARCH & T-SEARCH & T-SEARCH

SES appeared to have high incidence of ST, but risk of stent thrombosis was not adjusted according to clinical and angiographic factors

SIRTAX Trial

Two-year outcomes in diabetic subgroup

MACE: Death/MI/TLR

Billinger M et al., Eur H Journal 2008;29:718-25

SIRTAX Trial **Two-year outcomes in diabetic subgroup**

MACE

TLR

HR=0.52; 95% CI 0.28–0.99; P=0.05

HR=0.39; 95% CI 0.17–0.90; P=0.03

Billinger M et al., Eur H Jr 2008;29:718-25

CVRF CardioVascular Research Foundation

AMC DATA

A Randomized Comparison of SES vs. PES in Diabetic Patients

Lee et al, JACC 2008;52:727-33

CVRE CardioVascular Research Foundation

A Randomized Comparison of triple antiplatelet therapy With dual antiplatelet therapy After drug-eluting stent implantation

:<u>D</u>rug-<u>E</u>luting stenting followed by <u>C</u>ilostazol treatment reduces <u>LA</u>te <u>Re</u>stenosis in Patients with <u>Diabetes</u> mellitus

The DECLARE-DIABETES Trial

Seong-Wook Park, Seung-Whan Lee, Duk-Woo Park, Young-Hak Kim, Cheol Whan Lee, Myeong-Ki Hong, Jae-Joong Kim, Seung-Jung Park for the DECLARE-DIABETES Study investigators

> Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Restenosis rate CYPHER vs. TAXUS in DM

Sirolimus Paclitaxel

Lee et al, JACC 2008;52:727-33

Clinical Outcomes at 9-Months CYPHER vs. TAXUS in DM

Clinical Outcomes at 9 Months AMC data

	SES	PES	Р
Patients	(N=200)	(N=200)	
Death	0	1 (0.5%)	0.999
Cardiac	0	1 (0.5%)	
Non-cardiac	0	0	
MI	1 (0.5%)	1 (0.5%)	0.999
TLR	4 (2.0%)	15 (7.5%)	0.017
TVR	7 (3.5%)	16 (8.0%)	0.053
Death/MI/TLR	4 (2.0%)	16 (8.0%)	0.010
Death/MI/TVR	7 (3.5%)	17 (8.5%)	0.035
Stent thrombosis	1 (0.5%)	0	0.999
Acute	1 (0.5%)	0	
Subacute & Late	0	0	
		Lee et al IACC	2008.52.727_33

et al, JACC 2008;52:727-3 Asan Medical Center

DECLARE-DIABETES

Long-Term Outcomes: Two-year TLR-free survival

Lee et al, JACC 2009;53:812-813

DES-DIABETES

Two-year MACE-free survival

Follow-up duration (months)

MACE: Death/MI/TLR

Lee et al, JACC 2009;53:812-813

DES-DIABETES MACE at 2-years SES Ρ PES Patients 200 200 3(1.5%)Death 0.248 2(1.0%)Cardiac \mathbf{O} 1(0.5%)Non-cardiac $\mathbf{0}$ 2(1.0%)1 (0.5%) 0.999 MI **Stent thrombosis** 2(1.0%)0.499 ()Acute 1(0.5%)Subacute \mathbf{O} ()1 (0.5%) Late \mathbf{O} TLR 22 (11.0%) 7 (3.5%) 0.004

Death/MI/TVR11 (5.5%)28 (14.0%)0.004MACE (Death/MI/TLR)7 (3.5%)25 (12.5%)0.001

Lee et al, JACC 2009;53:812-813

Conclusions

 SES implantation is associated with reduced angiographic restenosis and 9-month TLR and MACE, and showed sustained reduction of 2-year TLR and MACE compared to PES implantation with no difference of death or MI

 The use of SES was negative independent predictors of angiographic restenosis, 2-year risks of TLR and MACE.

> Lee et al, JACC 2008;52:727-33 Lee et al, JACC 2009;53:812-813

NETWORK META-ANALYSIS UpTo 4 Years

RESEARCH

BM

Cumulative incidence of TLR in Diabetic Patients

Stettler et al, BMJ. 2008;337:a1331

Cumulative incidence of Death in Diabetic Patients

Stettler et al, BMJ. 2008;337:a1331

Asan Medical Center

Cumulative incidence of MI in Diabetic Patients

SES vs. BMS: Hazard Ratio 0.68 (0.43 to 1.12)

PES vs. BMS: Hazard Ratio 0.85 (0.54 to 1.43)

12/980

2/792

5/508

1/460

SES vs. PES: Hazard Ratio 0.80 (0.55 to 1.27)

55/1160

51/1054

PES

SES

1160

1054

2/142

0/56

Risk of stent thrombosis in diabetic patients

	Events				Relati	Relative risks (95% credibility interval)		
Variable	BMS	PES	SES	Total	SES v BMS	PES v BMS		
ARC definite stent thrombo	sis*							
	557	874	753	2184				
	13	17	9	39	0.33 (0.09 to 1.09)	0.82 (0.23 to 3.09)		
	11	9	6	26	0.25 (0.04 to 1.11)	0.39 (0.05 to 2.36)		
	2	8	3	13	0.72 (0.04 to 10.8)	3.54 (0.23 to 78.6)		
Patients without diabetes:								
No of patients at risk	2439	3130	2647	8216				
0 days to 4 years	34	56	46	136	1.24 (0.58 to 3.08)	1.48 (0.69 to 3.40)	0.84 (0.41 to 1.88	
0-30 days	19	22	28	69	1.19 (0.43 to 3.09)	1.11 (0.38 to 2.97)	1.06 (0.41 to 2.90	
>30 days to 4 years	15	34	18	67	1.19 (0.43 to 4.13)	1.83 (0.67 to 5.85)	0.65 (0.26 to 1.70	
Per protocol definition of st	ent throm	bosis†						
	723	912	870	2505				
	16	18	7	41	0.20 (0.05 to 0.68)	0.73 (0.19 to 2.80)		
	11	10	5	26	0.23 (0.03 to 1.08)	0.55 (0.09 to 3.05)		
	5	8	2	15	0.10 (0.01 to 0.93)	0.87 (0.06 to 10.3)		
Patients without diabetes:								
No of patients at risk	2577	3382	2625	8584				
0 days to 4 years	29	58	46	133	1.48 (0.74 to 3.41)	1.80 (0.89 to 3.67)	0.82 (0.44 to 1.73	
0-30 days	22	24	28	74	1.11 (0.47 to 2.81)	0.99 (0.44 to 2.33)	1.15 (0.48 to 2.72	
>30 days to 4 years	7	34	18	59	2.29 (0.83 to 7.77)	4.12 (1.55 to 13.1)	0.55 (0.25 to 1.27	

SES vs. PES

- There has been heterogeneous clinical outcomes, but SES showed consistent superiority of late loss and angiographic restenosis, which is translated to improved clinical outcomes (SIRTAX, DECLARE-DIABETES) without difference of death, MI, and stent thrombosis.
- Network meta-analysis showed similar TLR up to 4 years (HR 0.78, 95% CI,0.50 to 1.14), but HR favoring SES explained possible superiority of SES over PES, which was demonstrated in randomized trial (DECLARE-DIABETES) dedicated for diabetic patients

Comparison of the Efficacy and Safety of Zotarolimus-Eluting Stent versus Sirolimus-Eluting Stent and Pacli Taxel-Eluting Stent for Coronary Lesions: The ZEST Trial

ZEST-Diabetic Subgroup

Seung-Jung Park, MD, PhD on behalf of the ZEST investigators

Asan Medical Center

Intention-to-Treat Analyses Study Design

All Comer requiring PCI with DES for coronary lesions in 19 Centers of Korea (Total 2,640 patients)

Primary Study Endpoint

The composite clinical outcome of
 Death from any cause
 Myocardial infarction (MI)
 Ischemia-driven target-vessel revascularization (TVR)

at 12 months after the index procedure.

Study Endpoints

- Secondary Endpoint
 - : Death (all-cause or cardiac)
 - : MI
 - : Composite of death or MI
 - : TVR (all- and ischemia-driven)
 - : TLR (all- and ischemia-driven)
 - : Composite of death, MI, ischemia-driven TLR
 - : Stent thrombosis by ARC definition
 - : Late loss in both in-stent and in-segment at 9 months
 - : Restenosis in both in-stent and in-segment at 9 months
 - : Procedural success rate

Baseline Characteristics

Patients	ZES (n=883)	SES (n=878)	PES (n=884)	P value
Age (yr)	62±9	62±10	62±10	0.80
Male sex	586 (66)	591 (67)	582 (66)	0.80
Body mass index	25±3	25±3	25±3	0.88
Diabetes mellitus				
Any diabetes	268 (30)	247 (28)	245 (28)	0.42
Requiring insulin	32 (4)	33 (4)	36 (4)	0.88
Hypertension	552 (63)	517 (59)	540 (61)	0.29
Hyperlipidemia	466 (53)	451 (51)	446 (51)	0.62
Current smoker	236 (27)	256 (29)	243 (28)	0.51
Family history of CAD	48 (5)	44 (5)	52 (6)	0.72

n (%)

Death, MI, Ischemia-driven TVR Primary End Point at 12 month

Baseline Characteristics

Patients	ZES (n=268)	SES (n=247)	PES (n=245)	P value
Age (yr)	63±9	63±8	62±10	0.65
Male sex	157 (59)	148 (60)	157 (64)	0.42
Body mass index	25±3	25±3	25±3	0.89
Insulin-requiring	32 (12)	33 (13)	36 (15)	0.66
Hypertension	199 (74)	176 (71)	174 (71)	0.66
Hyperlipidemia	133 (50)	119 (48)	117 (48)	0.91
Current smoker	59 (22)	59 (24)	70 (29)	0.21
Family history of CAD	12 (5)	9 (4)	13 (5)	0.67

n (%)

Lesion Characteristics

Lesions	ZES (n=435)	SES (n=448)	PES (n=441)	P value
Location				0.39
LAD	52%	53%	51%	
LCX	21%	19%	21%	
RCA	27%	29%	28%	
ACC-AHA B2 or C type	72%	76%	74%	0.24
Total occlusion	6%	6%	8%	0.17
Thrombus-containing	3%	3%	3%	0.78
Bifurcation lesion	20%	18%	16%	0.24
Ostial lesion	7%	6%	7%	0.56
Restenotic lesion	1%	1%	1%	0.86

n (%)

Procedural Characteristics

Lesions	ZES (n=435)	SES (n=448)	PES (n=441)	P value
No. of stents per lesion	1.3±0.4	1.3±0.4	1.3±0.4	0.45
No. of stents per patient	1.8±0.9	1.8±0.9	1.8±0.9	0.92
Length of stents per lesion	30.9±13.1	31.9±13.5	30.9±14.3	0.22
Length of stents per patients	42.7±26.8	41.3±24.3	41.9±25.2	0.55
Maximal stent diameter	3.4±0.7	3.4±0.7	$3.5{\pm}0.6$	0.29
Maximal pressure	16.3±4.2	16.3±4.1	16.2±4.2	0.95
Direct stenting	7%	9%	7%	0.34
Use of IVUS	40%	42%	41%	0.62

Clinical Events During 12 Months of Follow-Up

Primary End Point at 12 month

: Death, MI, Ischemia-driven TVR

Death at 12 month

MI at 12 month

Death or MI at 12 month

Ischemia-Driven TLR at 12 month

Ischemia-Driven TVR at 12 month

Stent thrombosis at 12 month

: ARC Definite Criteria

Stent thrombosis at 12 month

: ARC Definite or Probable Criteria

Summary: ZEST Diabetic Subgroup

The use of Cypher stent resulted in fewer major adverse cardiac events as compared with Taxus Liberte or Endeavor stent, mainly due to significant reduction of TLR and TVR.

 There were no significant differences in terms of death, MI, or stent thrombosis.

Diabetes ; Other second-generation DESs → very limited data → warrants more studies....

SPIRIT III in Diabetes

p=NS

10 8.8 9 8 MACE 1 Year (%) 7 6 5 4.7 4 3 2 N=194 N=86 1 0 Xience V **TAXUS**

Evaluation of <u>D</u>iabetic <u>E</u>ffects on Clinical Outcomes After <u>S</u>irolimus-Eluting <u>S</u>tents in As<u>IAN</u> Population

The **DESSIAN** Registry

Clinical follow-up at 1-, 6-, and 12-months

*Primary end point: Composite of Death, MI, and TVR at 12-months `

Asan Medical Center

ESSENCE-DIABETES Trial AMC data

Patients with de novo coronary lesions requiring single or multiple stents in diabetic patients (Total patients, N=280) **18 Centers in Korea** 1:1 randomization **XIENCE V CYPHER** (n=140)(n=140)8 month angiographic follow-up 1-year clinical follow-up Primary end-point: Angiographic in-segment late loss at 8-month angiography Secondary end-point: Clinical outcomes at 12 month follow-up IVUS results at 8 month angiographic follow-up (selected center) PI: Seong-Wook Park, MD, PhD, FACC

CVRF CardioVascular Research Foundation

Asan Medical Center

DES vs. CABG in Diabetic Patients

DES vs. CABG Three-year mortality in Diabetes

Park DW et al., Circulation 2008;117:2079-2086

Asan Medical Center

AMC

Medically Treated Diabetes and Non-Diabetic (Syntax Subgroup) All-Cause Death/CVA/MI and MACCE at 12 Months

🔳 CABG 🛛 📃 TAXUS*

Adjusted HRs of 3-year Outcomes

	HRs	95% CI	Р	Interaction P
Oveall Patients				
Death	0.95	0.62,1.46	0.83	0.16
Death, QMI, CVA	0.96	0.65,1.42	0.85	0.93
TVR	4.31	2.28,8.15	<0.001	0.92
Diabetic Patients				
Death	0.55	0.24,1.25	0.15	
Death, QMI, CVA	0.78	0.38,1.62	0.51	
TVR	7.67	2.76,21.32	<0.001	
Non-Diabetic Patients				
Death	1.00	0.59,1.72	0.99	
Death, QMI, CVA	0.96	0.57,1.58	0.88	
TVR	2.94	1.36,6.38	0.006	

Asan Medical Center

Summary (1) DES in Diabetics

- Aggressive revascularization strategy improves the survival in diabetic patients compare to medical treatment.
- Diabetic patients treated with DES bring a reduced risk of TLR,TVR,TVF and MACE compared with BMS
- Diabetics still have higher TVR and Death/MI/TVR especially, insulin treated diabetics have a clear trend of poor clinical outcomes (Death, TVR and Death/MI/TVR) compared to non-diabetics even in the era of DES

Summary (2) DES in Diabetics

- According to the ISAR-DIABETES and DECLARE-DIABETES Trial, SES appears to be more effective than PES in preventing restenosis in on-label lesions. However, in real practice, two stent had similar outcomes.
- Adjunctive pharmacologic therapy (Cilostazol, GP IIb/IIIa, Thiazolidinediones, ACEI, strict glycemic control) is likely to further improve PCI outcomes
- Efficacy concerns of DES compare to surgery should be evaluated in the future.

Thank You !!

summitMD.com