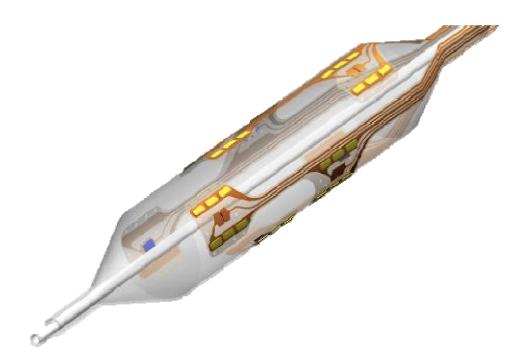


TCTAP 2012

Vessix Vascular V2 Renal Denervation System Achieving Safety and Efficacy in < 1 Minute James R. Margolis, MD Jackson South Community Hospital, Miami, Florida USA

Disclosure

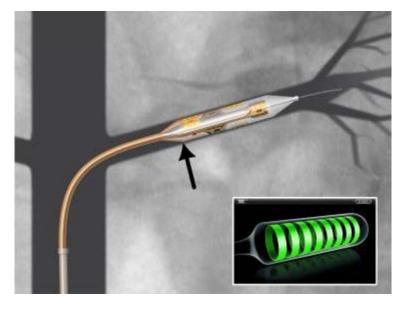
Consultant and stockholder Vessix Vascular


RF is Tricky/RF Experience Matters

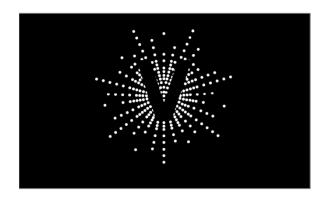
- Bipolar RF is Vessix' domain, and for <u>8 years</u> Vessix engineers have worked on nothing else.
- There are an unlimited number of variables and parameters involved in delivering ultra-safe and predictable RF — simply and quickly — nuances that can only be understood after years of study, trial and error.
- The treatment algorithm (temperature, time, impedance, apposition parameters) must align with the clinical application. Vessix has worked on a countless # of algorithms.
- Vessix has invested more than <u>128,000 engineering man-hours</u> on RF and occluding balloon catheters with mounted electrodes.
- Vessix is currently on its <u>12th generation of RF generator</u>, and its <u>60th version of RF</u> balloon catheter.
- Vessix devices have been tested in hundreds of animals (including 128 renal denervation procedures), and in more than 100 human arteries.

Optimized RF Balloon Catheter for Renal Denervation

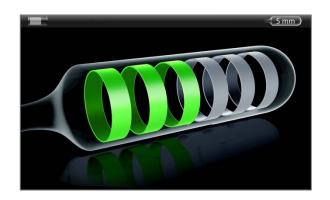
- Low pressure balloon (3 atm)
 eliminates possibility of
 barotrauma and facilitates good
 apposition
- Offset electrode pairs placed in helical pattern
- Solid gold electrodes for good thermal and electrical conductivity, radiopacity of each electrode on Angiogram
- Temperature precisely sensed and controlled at 68° C
- Optimized for delivery of thermal energy to adventitia (3-4 mm deep)



Vessix RF Balloon Catheter available in 4, 5, 6, 7 mm diameter sizes



Vessix Bipolar RF Generator



- One button operation no foot pedal
- Bipolar technology obviates the need for the grounding pad
- Battery operated (rechargeable)
- Algorithm controls temperature to achieve necessary depth of penetration for renal denervation in 30 seconds
- Graphical User Interface to confirm size of electrode, apposition of balloon catheter, display key parameters of treatment time and temperature
- Data storage accessible via standard USB drive

Splash Screen

Electrode pairs light up green to confirm apposition inside renal artery

Glow flashes prompting user to connect catheter

Once apposition achieved, asks user to begin treatment with x of y pairs

End of Treatment screen, data captured and saved to memory includes power, temp, time and # of electrodes activated

Confirms catheter size (diameter) and that catheter is connected

Active Treatment screen, indicates power, temp, time and # of electrodes active

Comparison vs. Ardian/Medtronic

Comparison vs. Medtronic

FEATURES	VESSIX VASCULAR	ARDIAN/MEDTRONIC
Catheter Type	Inflatable balloon with balloon mounted RF electrodes; requires only basic interventional skills.	RF ablation type <u>catheter</u> with 1mm <u>hot tip</u> ; <u>requires special skills to</u> <u>manipulate</u> .
# RF Treatments	30 sec inflations per renal artery	6-8 two minute (<u>12-16 min</u>) RF treatments per renal artery
Procedure Time	30-60 seconds per artery; 10 minutes per procedure	25-30 minutes per artery; 50-60 minutes per procedure
Catheter Placements	Balloon positioned as in standard PTA or stent procedure.	Random ablation points are selected along artery; need to skillfully manipulate catheter to achieve complete coverage.
RF Technology	Bipolar on balloon; allows for directed energy into adventitia. No grounding pad. Requires < 2 watts power.	Unipolar; requires grounding pad, much higher power (8 watts)
RF Generator Features	Small size; battery operated; one button operation.	Larger size; AC powered; requires foot pedal.
Patient Comfort	Very short treatment times for each artery.	Severe pain during each of 6-8 two minute inflations.

Pre-Clinical Work

Renal Denervation Program Pre-clinical Study Timeline

2010 - 2011

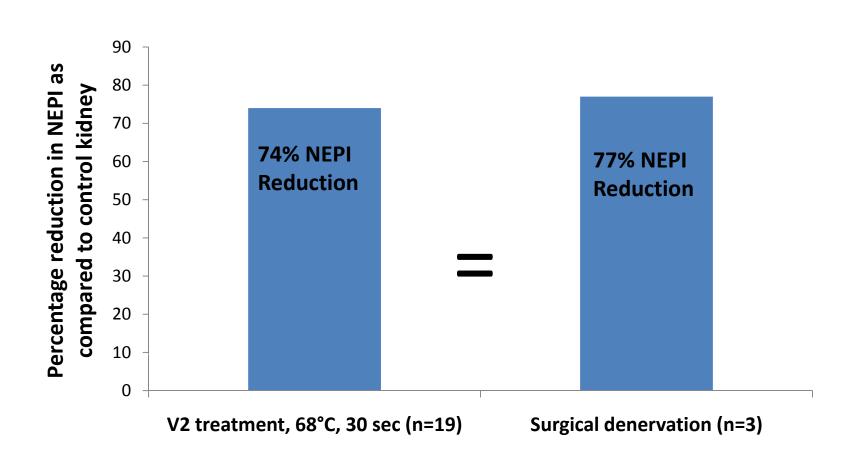
Development and iterative phase employing various designs of RF balloon catheter for renal denervation with new treatment algorithms

Verification testing of final V2 RDN System

Sep-Mar Initial animal studies confirming depth of penetration Apr - Jul

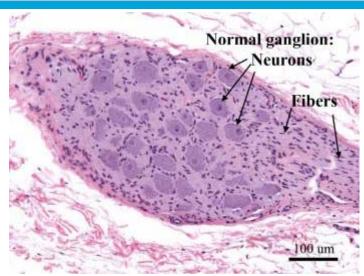
18 animals
with kidney NEPI
comparison
to establish efficacy at
7, 14, 28 days.
Angiograms and
histology to confirm
lack of flow limiting
stenosis in renal artery
at 28 days

Aug
20 animals
to confirm NEPI, histo
& angios with final
balloon catheter
design, and final
candidates for
temperature control
algorithm

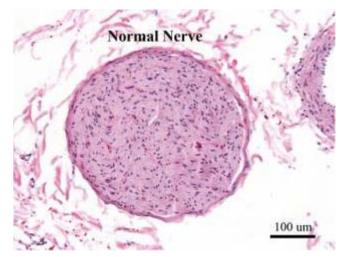

Aug
32 animals
to confirm final dose
NEPI, histo & angios.
Compare unilateral to
bilateral treatments,
surgery, shams and
endogenous levels

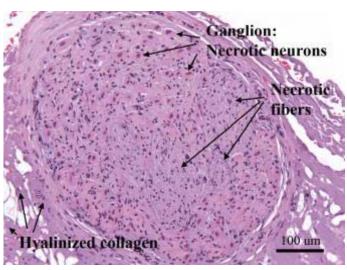
Sep 18 animals GLP Safety Study 28, 60, 90 days with angiograms and histology Oct 18 animals Final Confirmatory Study Dec 11, Feb 12
22 animals
180 day GLP Safety

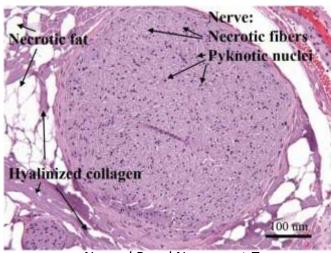
128 animals studied



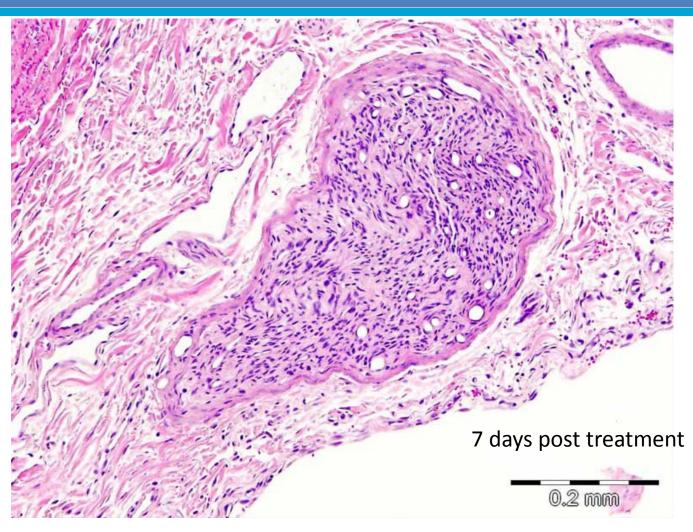
Reduction of Kidney Norepinephrine (NEPI) Content



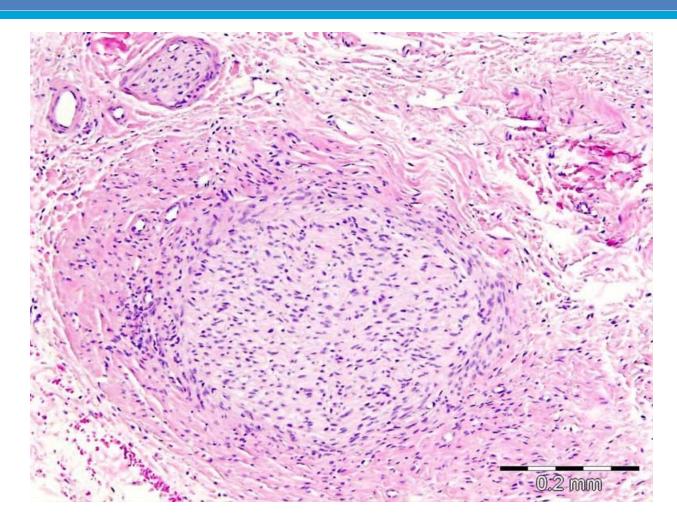

Histology Confirms Denervation


Normal Renal Nerve Ganglion pre-Tx

Normal Renal Nerve pre-Tx


Post RF treatment Necrotic Renal Nerve Ganglion

Normal Renal Nerve post-Tx

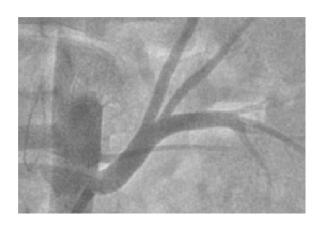

Histology Confirms Acute Denervation at 7 Days

Renal nerve with degenerative changes e.g., fibrosis, hypercellularity, axonal drop-out

Histology Confirms Chronic Denervation at 28 days

Renal nerve with chronic degenerative changes at 28 days post treatment

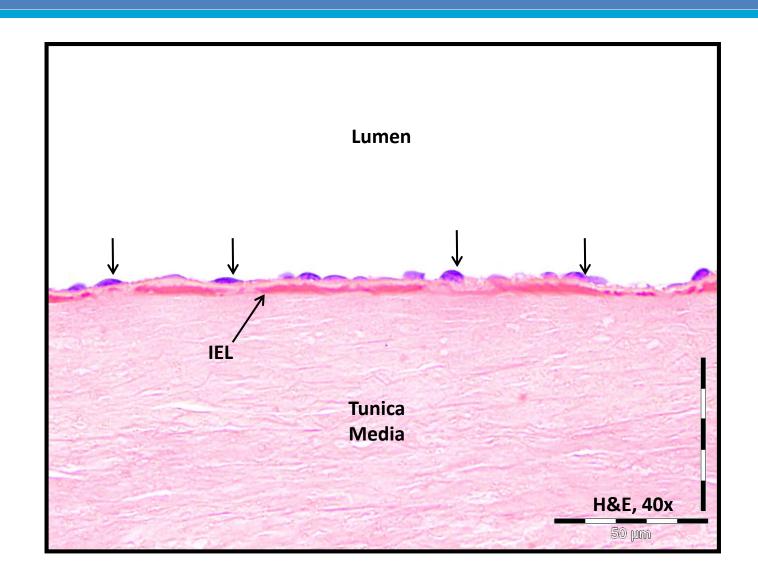
Histology Confirms Chronic Denervation at 90 days


Nerve with chronic degenerative changes at 90 days post treatment

GLP Safety Study – Confirms No Stenosis at 90 days

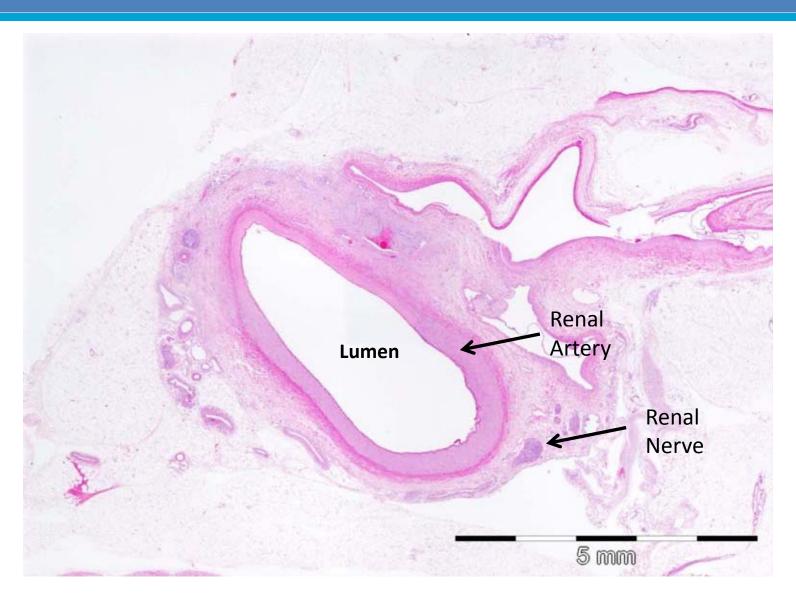
Pre-Treatment

90 Days Post Treatment

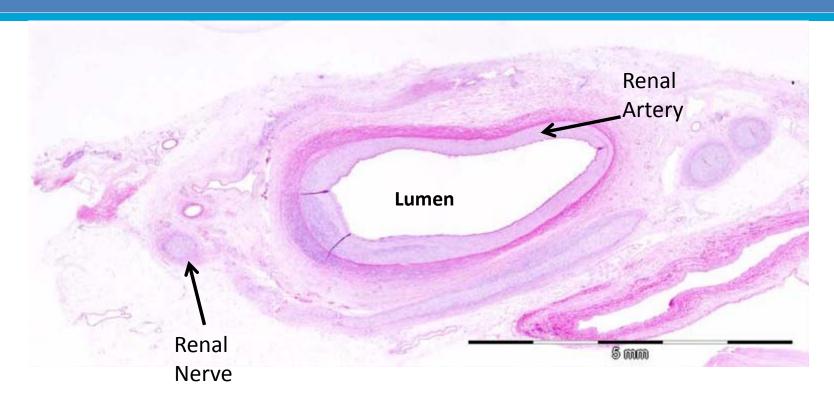


Balloon Location

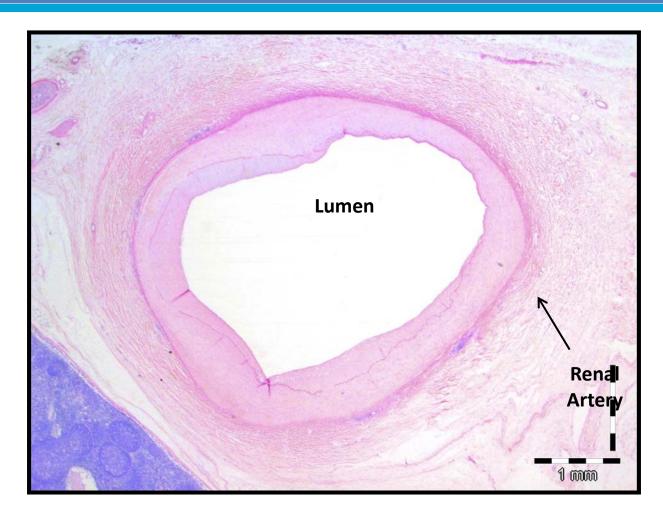
Representative angiography images of a renal artery pre-treatment and 90 days following treatment



V² Treatment, Day 7 - <u>No Endothelial Damage</u>



Histology Confirms Healing Response at 7 days


Histology Confirms Open Arteries at 28 days

Day 28 post treatment - Representative Microphotographs

Histology Confirms Open Arteries at 90 days

Day 90 post treatment Representative Microphotographs

REDUCE-HTN Clinical Study Overview

- **<u>DESIGN</u>** Non-randomized, international, multi-center, prospective, single cohort study for the percutaneous therapeutic treatment of medication-resistant hypertension.
- **SAMPLE SIZE** 64 subjects
- **STUDY SITES** 10 international sites
- **STUDY OBJECTIVE** To assess the safety, efficacy, and feasibility of the Vessix V2 System for the treatment of medication resistant hypertension
- GENERAL INCLUSION CRITERIA Adults with SBP ≥ 160 mm Hg based on an average of three (3) office-based blood pressure readings. On ≥ 3 anti-hypertensive drugs (one must be a diuretic) at maximally tolerated doses and has had no changes to the medication regimen two (2) weeks prior to enrollment;
- **PRIMARY SAFETY ENDPOINT** Acute safety of the renal denervation procedure. Absence of flow limiting stenosis in the renal artery at one (1) and six (6) months follow-up.
- PRIMARY EFFICACY ENDPOINT Reduction of systolic blood pressure and diastolic blood pressure at six (6) months as measured by office-based blood pressure assessment (seated) and ABPM following therapeutic renal denervation compared to baseline.
- **STUDY DURATION** 24 months

Clinical Sites/Investigators REDUCE-HTN clinical study Principal Investigator – Prof. med. Horst Sievert

10 Patients enrolled to date

Institution	Clinical Investigator	Enrollment to Date
Paracelsus-SALK Medical Center - Salzburg	Prof. Dr. Uta Hoppe	7
Monash Heart/Southern Health	Prof. Dr. Ian Meredith	
General and Academic Teaching Hospital	Prof. Dr. Franz Leisch, Dr. Thomas Lambert	
OLV - Aalst	Prof. Dr. B. de Bruyne, Dr. Eric Wyffels	2
UniversitatSpital Zurich	Prof. Dr. Thomas Luscher	
Georges Pompidou Hospital	Prof. Dr. Michel Azizi, Marc Sapoval	1
Hospital Eraseme	Prof. Dr. P. Van de Borne	
U. of Amsterdam	Prof. Dr. R. de Winter	
Frankfurt Cardiovascular Center	Prof. Dr. Horst Sievert	

Faster Easier Approach to Renal Denervation

- Can be used by anyone with standard angioplasty skills.
 - Interventional cardiologists
 - Interventional Radiologists
 - Vascular surgeons with endovascular skills
- Training time < 30 minutes
- Learning curve none
- Fast user friendly procedure
 - Balloon catheter prep time < 1min
 - Radiopaque solid gold electrodes allow precise positioning time < 1 min
 - One button pre-programmed generator treatment time 30 secs
- Patient friendly
 - Short procedure time
 - Less pain due to bipolar vs unipolar RF and short treatment times