Percutaneous LAA Closure: A Future Management Alternative for Stroke Prevention in AF Patients

Horst Sievert, Nina Wunderlich
CardioVascular Center Frankfurt
Frankfurt, Germany
Atrial fibrillation is one of the most important causes of stroke
Especially in elder patients

% of strokes which are caused by AF

Framingham Study, Wolf, 1991
What is the Annual Risk of Stroke?
Nat. Registry of AF: CHAD\(S_2\)

<table>
<thead>
<tr>
<th>CHADS Score</th>
<th># Pts n=1773</th>
<th># Strokes n=94</th>
<th>NRAF adjusted Stroke Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
<td>2</td>
<td>1.9 (1.2-3.0)</td>
</tr>
<tr>
<td>1</td>
<td>463</td>
<td>17</td>
<td>2.8 (2.0-3.8)</td>
</tr>
<tr>
<td>2</td>
<td>523</td>
<td>23</td>
<td>4.0 (3.1-5.1)</td>
</tr>
<tr>
<td>3</td>
<td>337</td>
<td>25</td>
<td>5.9 (4.6-7.3)</td>
</tr>
<tr>
<td>4</td>
<td>220</td>
<td>19</td>
<td>8.5 (6.3-11.1)</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>6</td>
<td>12.5 (8.2-17.5)</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>18.2 (10.5-27.4)</td>
</tr>
</tbody>
</table>
"Let's take Coumadin!"
Randomized Clinical Trials of Coumadin in Atrial Fibrillation

-71%* -86%* -69%* -52% -79%* -66%*

* p<0.05
Warfarin Net Clinical Benefit: Impact of Age

Net Clinical Benefit, Events Prevented per 100 Person – Years

Coumadin is a good idea,...

... if you can take it
- Any localized or general physical condition in which the hazard of hemorrhage might be greater than the potential clinical benefits of anticoagulation
- Any personal circumstance in which the hazard of hemorrhage might be greater than the potential clinical benefits of anticoagulation
- Pregnancy
- Hemorrhagic tendencies
- Blood dyscrasias.
- Recent or contemplated surgery of central nervous system
- Recent or contemplated surgery of the eye
- Recent or contemplated traumatic surgery resulting in large open surfaces
- Gastrointestinal bleeding
- Genitourinary tract bleeding
- Respiratory tract bleeding
- Cerebrovascular hemorrhage
- Cerebral aneurysms
- Dissecting aorta
- Pericarditis
- Pericardial effusions
- Bacterial endocarditis
- Threatened abortion
- Eclampsia
- Preeclampsia
- Inadequate laboratory facilities
- Unsupervised patients
- Senility
- Alcoholism
- Psychosis
- Lack of patient cooperation
- Spinal puncture
- Other diagnostic procedures with potential for uncontrollable bleeding
- Therapeutic procedures with potential for uncontrollable bleeding
- Major regional anesthesia
- Lumbar block anesthesia
- Malignant hypertension
Anticoagulation Underuse

Only about 1/3 of all eligible patients are taking Coumadin

Stafford and Singer, Arch Int Med, 1996
Anticoagulation Use in General Practice

Discontinuation

Other drugs?
All Anticoagulants

- Per definition
 - have to be given lifelong
 - have a bleeding risk
- Bleeding risk increases with age
- At some point Anticoagulants have to be stopped
- You should avoid anticoagulants in elderly patients because of higher bleeding risk
- You should avoid anticoagulants in younger patients because they would have to take it for a longer time period
Where do the thrombi arise?
Thrombus in the LAA
90 % of all thrombi in non-rheumatic atrial fibrillation originate in the LAA

<table>
<thead>
<tr>
<th>Setting</th>
<th>N</th>
<th>Appendage (%)</th>
<th>LA Body (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE</td>
<td>317</td>
<td>66 (21%)</td>
<td>1 (0.3%)</td>
<td>Stoddard; JACC ’95</td>
</tr>
<tr>
<td>TEE</td>
<td>233</td>
<td>34 (15%)</td>
<td>1 (0.4%)</td>
<td>Manning; Circ ’94</td>
</tr>
<tr>
<td>Autopsy</td>
<td>506</td>
<td>35 (7%)</td>
<td>12 (2.4%)</td>
<td>Aberg; Acta Med Scan ’69</td>
</tr>
<tr>
<td>TEE</td>
<td>52</td>
<td>2 (4%)</td>
<td>2 (3.8%)</td>
<td>Tsai; JFMA ’90</td>
</tr>
<tr>
<td>TEE</td>
<td>48</td>
<td>12 (25%)</td>
<td>1 (2.1%)</td>
<td>Klein; Int J Card Imag ’93</td>
</tr>
<tr>
<td>TEE & Operation</td>
<td>171</td>
<td>8 (5%)</td>
<td>3 (1.8%)</td>
<td>Manning; Circ ’94</td>
</tr>
<tr>
<td>SPAF III TEE</td>
<td>359</td>
<td>19 (5%)</td>
<td>1 (0.3%)</td>
<td>Klein; Circ ’94</td>
</tr>
<tr>
<td>TEE</td>
<td>272</td>
<td>19 (7%)</td>
<td>0 (0.0%)</td>
<td>Leung; JACC ’94</td>
</tr>
<tr>
<td>TEE</td>
<td>60</td>
<td>6 (10%)</td>
<td>0 (0.0%)</td>
<td>Hart; Stroke ‘94</td>
</tr>
<tr>
<td>Total</td>
<td>2018</td>
<td>201 (10%)</td>
<td>21 (1.0%)</td>
<td></td>
</tr>
</tbody>
</table>

From: Blackshear & Odell; 1996
PLAATO™ Device

ePTFE membrane

anchors

LA

LAA

Nitinol Cage
The first patient who underwent successful closure of the LAA

- Aug 30, 2001
- A.S., 72 y/o, male
- AF since 2 years
- Multiple contraindications for coumadin
- Very unstable INR
- CHADS score 3
First successful attempt of LAA closure

- Procedure time 85 min
- Complete seal
- No complications
- Coumadin off since 2001
- No neurological events
- Participated in other FIM trials
- Had his 80th birthday in Jan 2009
Watchman Device

- Nitinol frame
- PET membrane
- row of fixation barbs around the mid perimeter
- 21, 24, 27, 30, 33 mm

CE mark
WATCHMAN Device

Canine Model

30 days

45 days
Watchman Implantation

- LAA diameter in TEE 19 mm

- anatomy of LAA in TEE and fluoro
Watchman Implantation

<table>
<thead>
<tr>
<th>Maximum measured LAA ostium (mm)</th>
<th>Implant diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 - 19.5</td>
<td>21</td>
</tr>
<tr>
<td>20 - 22.9</td>
<td>24</td>
</tr>
<tr>
<td>23 - 25.9</td>
<td>27</td>
</tr>
<tr>
<td>26 – 28.9</td>
<td>30</td>
</tr>
<tr>
<td>29 – 31.9</td>
<td>33</td>
</tr>
</tbody>
</table>

- device selection according to measurements
- Implantation of 21mm Watchman Occluder

![Ultrasound image showing the heart with the Watchman Implantation device]
Watchman Implantation

- Check position
- Check device compression
- Check residual flow
- Tug test
- Release
Protect AF
(System for Embolic PROTECTion in Patients with Atrial Fibrillation)

- Multicenter
- Prospective randomized
- WATCHMAN vs coumadin 2:1
- Non-inferiority trial
- 800 pts (enrollment closed June 2008)
- > 900 patient-years
In- & Exclusion

Major inclusion criteria

- Non valvular AF with Chads2 score ≥ 1
- No contraindications to coumadin
- No co-morbidities mandating chronic warfarin use other than AF

Major exclusion criteria

- LAA thrombus
- Large PFO with significant atrial septal aneurysm
- Mobile aortic atheroma
- Symptomatic carotid artery disease
PROTECT AF Trial Endpoints

• Primary Efficacy Endpoint
 • All stroke
 • Cardiovascular and unexplained death
 • Systemic embolization

• Primary Safety Endpoint
 • Device embolization requiring retrieval
 • Pericardial effusion requiring intervention
 • Cranial bleeds and gastrointestinal bleeds
 • Any bleed that requires ≥ 2uPRBC
Primary Efficacy Endpoint
Freedom from Stroke, Death, Systemic Embolization

LAA closure not inferior to anticoagulation
All Stroke

Events/100 patient years

Warfarin: 3.2
LAA Closure: 2.3

P<0.05

28%
Hemorrhagic Stroke

P < 0.05

Events/100 patient years

Warfarin: 1.6
LAA Closure: 0.1

94%
Mortality

- Events/100 patient years
- P<0.05

Warfarin: 4.8
LAA Closure: 3

38% reduction
Safety

Freedom from device embolization, pericardial effusion, Severe bleeding

Mostly stroke and bleeding

Mostly pericardial effusion without sequelae

Event-free probability

Days

0 365 730 1,095
PROTECT AF

- ... was the "Proof of concept":
 - Left atrial appendage closure prevents stroke
 - It is as effective as anticoagulation
- As expected there are more early safety events after LAA closure due to pericardial effusions
- Under anticoagulation therapy there are more late safety events due to stroke and bleeding
Performance Metrics

PROTECT AF vs CAP

<table>
<thead>
<tr>
<th></th>
<th>PROTECT AF</th>
<th>PROTECT AF</th>
<th>CAP</th>
<th>p-value*</th>
<th>p-value±</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early</td>
<td>Late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure Time</td>
<td>62 ± 34</td>
<td>67 ± 36</td>
<td>58 ± 33</td>
<td>50 ± 21</td>
<td><0.001</td>
</tr>
<tr>
<td>Implant Success</td>
<td>485/542</td>
<td>239/271</td>
<td>246/271</td>
<td>437/460</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(89.5%)</td>
<td>(88.2%)</td>
<td>(90.8%)</td>
<td>(95.0%)</td>
<td></td>
</tr>
<tr>
<td>45-day Warfarin</td>
<td>414/478</td>
<td>194/235</td>
<td>220/243</td>
<td>352/371</td>
<td><0.001</td>
</tr>
<tr>
<td>Discontinuation Among Implant</td>
<td>(86.6%)</td>
<td>(82.6%)</td>
<td>(90.5%)</td>
<td>(94.9%)</td>
<td></td>
</tr>
</tbody>
</table>

*From tests comparing the PROTECT AF cohort with CAP
±From tests for differences across three groups (early PROTECT AF, late PROTECT AF, and CAP)

- Improvements seen over time in PROTECT AF
 - Shorter implant time, higher implant success rate, higher warfarin discontinuation rate
- Trends confirmed in CAP
Safety Event Rates

PROTECT AF vs CAP

<table>
<thead>
<tr>
<th>Event</th>
<th>PROTECT AF Early</th>
<th>PROTECT AF Late</th>
<th>CAP</th>
<th>p-value*</th>
<th>p-value±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure/Device Related Safety Adverse Events within 7 Days</td>
<td>27/271 (10.0%)</td>
<td>15/271 (5.5%)</td>
<td>17/460 (3.7%)</td>
<td>0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>Serious Pericardial Effusions within 7 Days</td>
<td>17/271 (6.3%)</td>
<td>10/271 (3.7%)</td>
<td>10/460 (2.2%)</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td>Procedure Related Stroke</td>
<td>3/271 (1.1%)</td>
<td>2/271 (0.7%)</td>
<td>0/460 (0.0%)</td>
<td>0.039</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Improvements seen over time for acute safety events

Fewer total procedure/device related events

Kar et al. TCT 2010
Concept of PLAATO and Watchman

- To close the LAA like with a ball
Amplatzer Cardiac Plug ACP
Concept of Amplatzer Cardiac Plug ACP
M.I., female, 66 years
Assessment before release

- Tug test
M.I., female, 66 years
Final position

• 3D TEE: LA en-face view of the occluder

• 2D TEE 93°
<table>
<thead>
<tr>
<th></th>
<th>FIM Registry</th>
<th>CVC Frankfurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>143</td>
<td>67</td>
</tr>
<tr>
<td>Technical success rate</td>
<td>96.4%</td>
<td>96%</td>
</tr>
<tr>
<td>MAE < 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tamponade</td>
<td>3.5%</td>
<td>0</td>
</tr>
<tr>
<td>- Device embolisation</td>
<td>1.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>- Stroke</td>
<td>2.1%</td>
<td>0</td>
</tr>
</tbody>
</table>
New Approaches

• Endocardial
 - Occlutech
 - Coherex
 - Gore

• Epicardial
 - Epitec
 - AtriCure
 - SentreHeart
 - Aegis Medical
June 23 – 25, 2011 | Frankfurt, Germany

CSI 2011 – Catheter Interventions in Congenital & Structural Heart Disease

www.csi-congress.org

LIVE CASES
Take Home Messages

- Atrial fibrillation is a frequent cause of stroke
- Thrombi originate in the left atrial appendage
- Catheter closure of the atrial appendage is feasible and relatively safe
- The randomized trial with the Watchman device showed that the procedure is safe and effective in stroke reduction and not inferior compared to anticoagulation
- Currently two devices are available for LAA closure
- Many others are under development
Thank You