Effect of statin therapy on CV outcome in dyslipidemia patients with Chronic Kidney Disease (CKD)

Duk-Woo Park, MD, PhD Asan Medical Center, Seoul, Korea

Contonto
Contents
01. Cholesterol, CKD and CVD
02. Statin Effects on each CKD Stage
03 Linid Guideline in natients with CKD
vol. Inplu dulucinie in patients with end
04. ESRD and Current Issue of Lipid Guideline

01. Cholesterol, CKD and CVD

Definition and Stage of CKD (NKF)

• Definition of CKD

At least 3 months of either

- structural or functional abnormalities of the kidney that can lead to kidney failure
- GFR < 60 mL/min/1.73m2

Stage	Description	GFR (mL/min/1.73 m²)	Clinical Term
1	Kidney damage with normal or \uparrow GFR	≥90	
2	Kidney damage with mild \downarrow GFR	60-89	
3	Moderate ↓ GFR	30-59	CKD
4	Severe ↓ GFR	15-29	Advanced CKD
5	Kidney failure	<15 (or dialysis)	ESRD

Cholesterol, CKD and CVD

Cholesterol and the Risk of Renal Dysfunction

A prospective cohort study 4,483 initially healthy men

Age-adjusted and multivariable-adjusted RR and 95% CI of reduced GFR(<55 mL/min)

	Age-Adjusted RR (95% CI)	Model 1 ^b RR (95% CI)	Model 2 ^c RR (95% CI)		
Total cholesterol (mg/dl)					
<200	1.00	1.00	1.00		
200 to 239	1.12 (0.79 to 1.59)	1.09 (0.74 to 1.61)	1.07 (0.72 to 1.58)		
≥240	1.38 (0.96 to 2.00)	1.38 (0.91 to 2.08)	1.33 (0.88 to 2.01)		
HDL (mg/dl)					
≥40	1.00	1.00	1.00		
<40	1.15 (0.86 to 1.53)	1.54 (1.09 to 2.17)	1.45 (1.03 to 2.05)		
Non-HDL cholesterol ^a					
<142.1	1.00	1.00	1.00		
142.1 to 168.0	1.13 (0.72 to 1.79)	1.35 (0.81 to 2.26)	1.32 (0.79 to 2.22)		
168.1 to 196.1	1.23 (0.78 to 1.93)	1.42 (0.85 to 2.38)	1.38 (0.82 to 2.32)		
≥196.1	◆ 1.42 (0.92 to 2.20)	1.81 (1.10 to 2.97)	1.70 (1.03 to 2.82)		
Ratio of total cholesterol/HDL					
<4.1	1.00	1.00	1.00		
4.1 to 5.2	0.76 (0.49 to 1.18)	0.88 (0.54 to 1.44)	0.86 (0.53 to 1.41)		
5.3 to 6.8	0.84 (0.55 to 1.28)	1.05 (0.65 to 1.70)	1.01 (0.62 to 1.64)		
≥6.8	1.22 (0.83 to 1.82)	1.89 (1.19 to 3.01)	1.71 (1.07 to 2.74)		

***Model 1**: Adjusted for age, smoking, alcohol consumption, diabetes, BMI, exercise, history of hypertension, parental history of MI 60 years, history of past or current cholesterol treatment at baseline, and randomized treatment assignment. **Model 2**: Adjusted for all variables in model 1, plus additionally for the development of hypertension and CVD during follow-up period.

Relationship between eGFR and CV event

1,120,195 adults, Mean follow-up : 2.84 years Cardiovascular Events* = 139,011

CVD risk of patients with ESRD

CV Risk According to Stages of CKD

Stage	CV Risk (Odds Ratio, Univariate)
1	Depending on degree of proteinuria
2	1.5
3	2 to 4
4	4 to 10
5	10 to 50
ESRD	20 to 1000

The increase in risk in comparison with people free of CKD depends on the age of the population studied. The younger the person, the higher the relative risk. Microalbuminuria increases the CV risk 2- to 4-fold

CV mortality in ESRD

Cardiovascular disease accounts for almost half of the total mortality in patients with ESRD in **US (1989-1992)**

02. Statin Effects on each CKD Stage

Statin Effect on CKD stage I -II

CARDS trial: Effects of Atorvastatin 10 mg on Kidney Outcomes in Patients with DM

Result : Yearly mean within-person change in eGFR by treatment group and baseline albuminuria.

CARDS - CKD : Effects of Atorvastatin 10 mg on CV Outcomes in Patients with DM

	% With E	vent (n/N)					
End Point	Placebo	Atorvastatin	HR (95% CI) for Treatment Effect	Р	Adjusted HR* (95% CI)	Р	
Major cardiovascular disease							
$eGFR \ge 60 \text{ mL/min/1.73 m}^2$	9.22% (85/922)	6.13% (58/946)	0.65 (0.46-0.90)	0.01	0.65 (0.47-0.91)	0.01	
eGFR < 60 mL/min/1.73 m ²	8.61% (42/488)	5.19% (25/482)	0.58 (0.36-0.96)	0.03	0.57 (0.35-0.94)	0.02	
All	9.01% (127/1410)	5.81% (83/1,428)	0.63 (0.48-0.83)	< 0.001	0.63 (0.48-0.83)	< 0.001	
Treatment-eGFR interaction coe	efficient, -0.14 (95% CI, -	-0.74 to 0.46); P = 0.6					
Coronary heart disease							
eGFR \geq 60 mL/min/1.73 m ²	5.42% (50/922)	3.49% (33/946)	0.63 (0.40-0.98)	0.04	0.64 (0.41-0.99)	0.04	
eGFR < 60 mL/min/1.73 m ²	5.53% (27/488)	3.73% (18/482)	0.66 (0.36-1.20)	0.2	0.65 (0.36-1.17)	0.2	
All	5.46% (77/1,410)	3.57% (51/1,428)	0.64 (0.45-0.91)	0.01	0.64 (6.45-0.91)	0.01	
Treatment-eGFR interaction coe	efficient, 0.02 (95% CI, -0	.72 to 0.76); P = 0.9					
Stroke							
$eGFR \ge 60 \text{ mL/min/1.73 m}^2$	2.60% (24/922)	1.59% (15/946)	0.60 (0.32-1.14)	0.1	0.62 (0.33-1.18)	0.3	
$eGFR < 60 mL/min/1.73 m^2$	3.07% (15/488)	1.24% (6/482)	0.39 (0.15-1.01)	0.04	0.38 (0.15-0.99)	0.04	
All	2.77% (39/1,410)	1.47% (21/1,428)	0.52 (0.31-0.89)	0.01	0.53 (0.31-0.89)	0.02	
Treatment-eGFR interaction coe	efficient, -0.48 (95% Cl, -	-1.62 to 0.67); P = 0.4					
Coronary revascularization							
$eGFR \ge 60 \text{ mL/min/1.73 m}^2$	2.39% (22/922)	2.01% (19/946)	0.83 (0.45-1.54)	0.6	0.84 (0.45-1.54)	0.6	
eGFR < 60 mL/min/1.73 m ²	2.46% (12/488)	1.04% (5/482)	0.41 (0.14-1.17)	0.08	0.40 (0.14-1.15)	0.07	
All	2.41% (34/1,410)	1.68% (24/1,428)	0.69 (0.41-1.16)	0.2	0.68 (0.41-1.15)	0.2	
Treatment-eGFR interaction coe	efficient, 0.73 (95% CI, -0	.48 to 1.94); P = 0.2					
Death from any cause							
$eGFR \ge 60 \text{ mL/min/1.73 m}^2$	5.64% (52/922)	3.59% (34/946)	0.63 (0.41-0.98)	0.04	0.65 (0.42-1.00)	0.05	
$eGFR < 60 mL/min/1.73 m^2$	6.15% (30/488)	5.60% (27/482)	0.89 (0.53-1.50)	0.7	0.86 (0.51-1.45)	0.6	
All	5.82% (82/1,410)	4.27% (61/1,428)	0.73 (0.52-1.01)	0.06	0.73 (0.53-1.02)	0.06	
Treatment-eGFR interaction coe	efficient, 0.29 (95% CI, -0	.39 to 0.96); P = 0.4					

PLANET I: Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease

Population

- Age \geq 18 yrs with diabetes
- Moderate proteinuria (urinary protein / creatinine ratio 500–5,000 mg/g)
- Hypercholesterolemia (fasting LDL-C ≥90 mg/dL (2.33 mmol/L)
- ACE inhibitors or ARBs for ≥3 months prior to screening

Endpoint

- O Primary endpoint :
 - Change in $U_{\mbox{\scriptsize PCR}}$ from baseline to Week 52
- **O** Secondary endpoint :
 - Change in U_{PCR} from baseline to Week 26
 - Change in eGFR from baseline to Week 26, 52
 - Change in $U_{\mbox{\scriptsize ACR}}$ from baseline to Week 26, 52
 - Change in lipid level from baseline to Week 52

* U_{PCR}, urine protein/creatinine ratio, U_{ACR}, urine albumin/creatinine ratio, eGFR estimated glomerular filtration rate

Lancet Diabetes Endocrinol. 2015 Mar;3(3):181-90. doi: 10.1016/S2213-8587(14)70246-3. Epub 2015 Feb 4.

PLANET II : Renal effects of atorvastatin and rosuvastatin in patients who have progressive renal disease

Population

- Age \geq 18 yrs
- Moderate proteinuria (urinary protein / creatinine ratio 500–5,000 mg/g)
- Hypercholesterolemia (fasting LDL-C ≥90 mg/dL (2.33 mmol/L)
- ACE inhibitors or ARBs for ≥3 months prior to screening

Endpoint

- O Primary endpoint :
 - Change in $U_{\mbox{\scriptsize PCR}}$ from baseline to Week 52
- **O** Secondary endpoint :
 - Change in U_{PCR} from baseline to Week 26
 - Change in eGFR from baseline to Week 26, 52
 - Change in $U_{\mbox{\scriptsize ACR}}$ from baseline to Week 26, 52
 - Change in lipid level from baseline to Week 52

* U_{PCR}, urine protein/creatinine ratio, U_{ACR}, urine albumin/creatinine ratio, eGFR estimated glomerular filtration rate

Ref 9. De Zeeuw D, et al. Lancet 2015.http://dx.doi.org/10.1016/S2213-8587(14)70246-3.

PLANET I and II : Primary endpoint

*Post-hoc analysis

† p<0.05 vs rosuvastatin 40 mg in exploratory analysis; ‡p<0.05 vs rosuvastatin 10 mg in exploratory analysis

PLANET I and II : Secondary endpoint

*Post-hoc analysis

† p<0.05 vs rosuvastatin 40 mg in exploratory analysis

PLANET 1 : Reported adverse events

n (%)	Rosuvastatin 10 mg n = 116	Rosuvastatin 40 mg n = 123	Atorvastatin 80 mg n = 110
Any adverse event	69 (59.5)	79 (64.2)	63 (57.3)
Any serious adverse event	18 (15.5)	20 (16.3)	21 (19.1)
Any renal adverse event	9 (7.8)	12 (9.8)	5 (4.5)
Acute renal failure	0	5 (4.1)	1 (0.9)
Serum creatinine doubling	0	6 (4.9)	0
Doubling of serum creatinine or acute renal failure	0	9 (7.3)	1 (0.9)
Death	4 (3.4)	1 (0.8)	0

Statistical analysis of adverse events was not presented

One serious AE (2 episodes of cardiac failure in rosuvastatin 10 mg group) was considered related to study drug No episodes of acute renal failure were considered related to study drug

Statin Effect on CKD stage III

TNT – CKD : Effects of Atorvastatin 80 mg on Kidney Outcomes in Patients with CHD

TNT- CKD subgroup: Effects of Atorvastatin 80 mg on CV Outcomes in Patients with CHD & CKD

Statin Effect on CKD stage IV-V

4D: Effect of Statins in Dialysis Patients

AURORA : Effect of Statins in Dialysis Patients

SHARP : Effect of Statins in CKD patients (including Dialysis Patients)

	Major Atherosclerotic Events by Renal Status										
	<u>Eze/simv</u> (n=4650)	Placebo (n=4620)	Risk ratio &	95% CI							
Non-dialysis (n=6247) Dialysis (n=3023) Major atherosclerotic event	296 (9.5%) 230 (15.0%) 526 (11.3%)	373 (11.9%) 246 (16.5%) 619 (13.4%)		0.78(0.67-0.91) 0.90(0.75-1.08) 16.5% SE 5.4 reduction (p=0.0022)							
Heterogeneity between patients on di $(\chi 2_1=1.34; p=0.25)$	0.6 0.8 1.0 Eze/simv better	0 1.2 1.4 Placebo better									

Meta-analysis 2013

Meta-analysis : 48,429 patients with CKD, including 6690 major CV events and 6653 deaths

Patient : CKD stages I-V

Comparison: Statins versus placebo

• Outcome: major CV events

Meta-analysis 2013 : CKD Not Requiring Dialysis

Patient : CKD not requiring dialysis Comparison: Statins versus placebo or no treatment Outcome: Major cardiovascular events

Study or subgroup	Statin	Control	Risk Ratio	Weight	Risk Ratio
Sawara 2008	0/22	0/16	N, Sandon, Joho Ca		Not estimable
Rayner 1996	3/9	2/8		0.3 %	1.33 [0.29, 6.06]
AFCAPS/TexCAPS 1997	8/145	21/159		1.2 %	0.42 [0.19, 0.91]
PREVEND IT 2000	21/433	24/431	100 - 200 v - 100	2.2 %	0.87 [0.49, 1.54]
CARDS 2003	25/482	42/488	<u> 20 - 20 -</u> 2	3.0 %	0.60 [0.37, 0.97]
LIPS Study 2005	23/150	47/160	1 <u>11 111 111</u>	3.4 %	0.52 [0.33, 0.82]
MEGA Study 2004	33/1471	71/1507	<u> </u>	4.0 %	0.48 [0.32, 0.72]
JUPITER Study 2007	40/1638	71/1629		4.4 %	0.56 [0.38, 0.82]
ALLIANCE Study 2000	78/286	105/293	-	8.9 %	0.76 [0.60, 0.97]
HPS 2002	182/646	268/683	-	15.2 %	0.72 [0.62, 0.84]
4S 1993	226/1137	326/1169	a	15.7 %	0.71 [0.61, 0.83]
SHARP Study 2010	296/3117	373/3130	a	16.2 %	0.80 [0.69, 0.92]
PPP Study 1992	1590/8376	2011/8448	1	25.6 %	0.80 [0.75, 0.85]
Total (95% CI)	17912	18121	۰.	100.0 %	0.72 [0.66, 0.79]
Total events: 2525 (Statin), 3361 (Control)				
Heterogeneity: Tau ² = 0.01; Chi ² :	= 18.33, df = 11 (P	= 0.07); 2 = 40%			
Test for overall effect: $Z = 7.34$ (P	< 0.00001)				
Test for subgroup differences: Not	applicable				
			<u></u>		

Meta-analysis 2013 : CKD Requiring Dialysis

Patient : CKD requiring dialysis Comparison: Statins versus placebo or no treatment Outcome: Major cardiovascular events

03. Lipid Guideline in Patients with CKD

2013 ACC/AHA Guideline

2013 ACC/AHA Guideline

statin benefit groups

✓ with clinical ASCVD*

- ✓ primary elevations of LDL-C ≥190 mg/dL
 - **diabetes aged 40 to 75 years** with LDL-C 70-189 mg/dL
 - without clinical ASCVD or diabetes who are 40 to 75 years of age

with LDL-C 70- 189 mg/dL and an estimated 10-year ASCVD risk > 7.5%

* Clinical ASCVD - ACS, or a history of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, TIA, or PAD presumed to be of atherosclerotic origin.

2013 ACC/AHA Guideline

Keep in Mind : 2013 ACC/AHA Guideline

N (No recommend	71,72		_
ation)			
e is <u>insufficien</u>	t evidence o	r evidence i	is unclear o
	ation) e is <u>insufficien</u> d harms cannot	e is <u>insufficient evidence o</u> d harms cannot be determin	e is <u>insufficient evidence or evidence</u> d harms cannot be determined because

evidence, insufficient evidence, unclear evidence, or conflicting evidence, and the Work Group thought no recommendation should be made. Further research is recommended in this area.

4D post hoc analysis

In dialysis diabetic patients with high levels of LDL cholesterol levels, atorvastatin decreased the risk of fatal and nonfatal cardiac events

													L	DL-(C > 145	
	Quartile 1 (\leq 104 mg/dl) ($n = 297$)				Quartile 2 (104 to 123 mg/dl) (n = 328)			Quartile 3 (123 to 145 mg/dl) ($n = 316$)				Quartile 4 (>145 mg/dl) ($n = 314$)			1)	
Endpoint	Number of Events	HR	95% CI	Р	Number of Events	HR	95% CI	Р	Number of Events	HR	95% CI	Р	Number of Events	HR	9 <mark>5% C</mark> I	Р
Composite primary endpoint, FE	105	0.85	(0.57, 1.27)	0.433	120	1.11	(0.77, 1.61)	0.573	117	0.96	(0.66, 1.38)	0.821	127	0.69	(0.48, 1.00)	0.052
Composite primary endpoint, ME	123	0.90	(0.61, 1.33)	0.597	131	0.98	(0.69, 1.40)	0.907	145	0.99	(0.68, 1.43)	0.960	149	0.65	(0.44, 0.96)	0.032
Cardiac death	75	0.90	(0.57, 1.43)	0.660	65	0.99	(0.60, 1.65)	0.978	69	0.87	(0.53, 1.41)	0.563	61	0.58	(0.34, 0.99)	0.044
Sudden cardiac death	35	1.34	(0.68, 2.62)	0.397	43	1.05	(0.56, 1.97)	0.869	41	1.07	(0.57, 2.00)	0.840	41	0.48	(0.25, 0.94)	0.033
Nonfatal MI, FE	30	0.85	(0.41, 1.77)	0.663	33	1.24	(0.62, 2.51)	0.539	42	1.00	(0.54, 1.87)	0.995	44	0.62	(0.33, 1.17)	0.138
Nonfatal MI, ME	33	0.81	(0.39, 1.67)	0.572	35	0.96	(0.49, 1.87)	0.897	49	1.37	(0.74, 2.53)	0.310	49	0.50	(0.27, 0.91)	0.024
All cardiac events, FE	106	0.82	(0.56, 1.21)	0.323	106	0.99	(0.67, 1.45)	0.944	117	0.92	(0.63, 1.32)	0.641	122	0.68	(0.47, 0.98)	0.041
All cardiac events, ME	144	0.78	(0.53, 1.14)	0.201	134	0.89	(0.61, 1.30)	0.551	160	1.10	(0.76, 1.57)	0.615	147	0.54	(0.38, 0.79)	0.001
All cerebrovascular events, FE	28	1.00	(0.47, 2.15)	0.997	38	1.28	(0.66, 2.46)	0.466	34	0.96	(0.49, 1.90)	0.913	49	1.14	(0.64, 2.02)	0.653
All cerebrovascular events, ME	31	1.02	(0.47, 2.21)	0.958	43	1.14	(0.59, 2.22)	0.692	47	0.97	(0.47, 1.99)	0.929	55	1.32	(0.72, 2.41)	0.364
Death from all causes	139	1.02	(0.71, 1.45)	0.929	167	0.93	(0.68, 1.27)	0.642	152	0.84	(0.61, 1.17)	0.312	159	0.72	(0.52, 0.99)	0.047

Meta-analysis 2013 ; adjusted by LDL reduction

Effects for statin therapy on major cardiovascular events risk ratio adjusted by LDL reduction

Summary

- Dyslipidemia in patients with CKD contributes to progressive loss of kidney function and to high CV morbidity and mortality.
- Statin therapy in patients with CKD reduces the risk of major CV events, as well as mortality, across a broad range of kidney functions.
- Current lipid guideline did not recommend the initiation or discontinuation of statins for dialysis patients because benefit of statin therapy in those patient is unclear.
- Until more data are available, dialysis patients might reasonably choose statin treatment if they have elevated level of LDL of with recent CVD event.