New Transcatheter Heart Valves

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Chief, Division of Cardiovascular Medicine Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Grant/Scientific Advisory Board
- Executive Physician Council

Company

- Edwards Lifesciences
- Medtronic
- Boston Scientific Corp

TAVR ProceduresGrowth from 2010 - 2018

Multiple Industry Sources - 2013

* Extreme risk = "inoperable"

Balloon-expandable THV Edward Sapien (Stainless Steel stent frame, bovine pericardium)

Self-expandable THV Medtronic CoreValve (Nitinol stent frame, porcine pericardium)

Balloon-expandable THV Edwards Sapien XT (Cobalt chromium stent frame, bovine pericardium)

Self-expandable THV Medtronic CoreValve (Nitinol stent frame, porcine pericardium)

Characterizing TAVR Technologies New Self-Expanding TAVR Systems

PORTICO (St. Jude)

ENGAGER (Medtronic)

ACURATE (Symetis)

EVOLUT R (Medtronic)

Characterizing TAVR Technologies Not All New TAVR Systems are Self-Expanding Designs

Direct Flow: Polyester fabric cuff with two inflatable rings; positioning wires for placement; bovine tissue valve Lotus: Nitinol wire frame, bovine tissue valve; outer PU skirt; mechanical expansion and locking Jena Valve: Nitinol-based, positioning feelers and clipping mechanism; porcine aortic root valve

SAPIEN 3: balloon exp (4 sizes), cobalt frame; bovine tissue valve; outer skirt; precise positioning

Edwards Expandable Introducer Sheath

CoreValve and EnVeoR Sheath

Calibri Heart Valve « DRY » TECHNOLOGY

- Makes tissue thin, strong, durable
 - 70% reduction of mass compared to a « wet » membrane

« DRY » TECHNOLOGY

- Allows folded design creates continuous surface
 - Minimum of sutures in operating surface (durability)
 - Less than 200 sutures for mounting (manufacturing)

« DRY » TECHNOLOGY

- Independent low-mass folded leaflet allows compensation
 - Larger effective orifice area
 - Adjust to out of round anatomies (eccentric calcifications, bicuspid valve)

PCR 2014 Low Profile Pre-Packaged TAVI System

- Pre-mounted, pre-crimped, pre-packaged
- Pre-loaded, sterilized and Ready-For-Use
- Balloon expandable: delivered through *14 Fr* sheath (24mm valve)

Optimum TAV: Design based on the Natural Aortic Valve

Optimal performance criteria used for the design: 1. A defined coaptation height. 2. No folds in the leaflet. 3. A minimum valve height. 4. A minimum leaflet flexion.

The Criteria is enforced using equations containing valve dimensions

- Rb = radius of the bases
- Rc = radius of the commissures
- H = the valve height
- L_f = length of leaflet free edge
- Hs = Commissural height
 - Cc = Coaptation height

Optimum Valve Design

- Single bovine pericardial cut-out used for all three leaflets
- The valve has commissure posts
 - Provides proper opening
 - Provides proper coaptation surface
- Valve design minimizes sutures
 - Total sutures 274
 - No suture holes in moving leaflets (similar to surgical valves)
- 25mm OD Nitinol frame
 - Designed for up to 23mm annulus
 - Designed for stronger radial force
 - 19mm height

The Optimum TAV - Durability Tester

on the Januarities

- Regurgitant fraction 4.5% (less than the surgical control).
- EOA 2.1 sq cm.

COLUMBEA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian

Durability Testing in Pulse Duplicator

- 5 Optimum TAV and 1 \bullet surgical control
- 3 circular and 2 • elipitical
- All have completed 210 ٠ million cycles - no evidence of significant wear or change in hemodynamics

Million

An Ultra-low Profile TAVR System

12 Fr delivery catheter (3.8 mm diameter) for all valve sizes (1st generation)

Device Components

- 1. Nitinol self-expanding frame module inserted in optimal annular location
- 2. Valve module is reconstituted in ascending Ao
- 3. Valve module is docked to frame

An Ultra-low Profile TAVR System

12 Fr delivery catheter (3.8 mm diameter) for all valve sizes (1st generation)

"Unique" Valve Medical Design Features

- Ultra-low profile 12 French delivery system for all valve sizes
- Modular design (frame and valve separate)
- Folded valve design (not crimped)
- 3-D valve leaflet construction
- *In-situ* docking (valve to frame in ascending Ao)
- Coating to reduce Para-valvular regurgitation
- Temporary valve (in descending Ao) for safety

Valve Module Reconstitution

Zip lock

- Rings are collapsed and opened to a flat configuration
- Lengthwise folding of rings + valve and inserted into delivery catheter
- All valve sizes loaded into same low profile delivery catheter

3-D Valve Leaflets

- Single piece of pericardium is fixed 3D on a mandrel
- Fewer stiches → improved manufacturability and durability
- Enhanced coaptation → wider opening and improved hemodynamics
- Full thickness bovine pericardium (500 microns)

Polymer Coating

Para-valvular leak prevention

- Two-layer polym
- External hydroge
- Frame stored dry
- Following implan hydrogel swells c

Device Evolution

- What is the balance between French size and leaflet technology?
- Is repositionability necessary?
- What tools can we add to promote coplanar deployment of the valve?
- Will skirt marker be helpful to accurately placement of the valve?
- What can be done to tackle asymmetric calcification of the leaflets leading to poor apposition?

