Can We Safely Defer PCI Just Based on FFR>0.80?

Yes, already proven

Seung-Jung Park, MD., PhD.

Professor of Medicine, University of Ulsan, College of Medicine Heart Institute, Asan Medical Center, Seoul, Korea

CardioVascular Research Foundation

LAND COLLEGE MEDICINE

Why FFR?

s Angiography Enough for Diagnosis of Clinical Ischemia ?

Visual Functional Mismatch

Angiographic DS(%) : 85% IVUS MLA : 2.8 mm²

FFR : 0.84 Treadmill test : Negative Thallium spect : Normal Stress Echo : Normal

Reverse Mismatch

Visual Estimation : 30%

FFR : 0.70 IVUS MLA: 4.5 mm2 Treadmill test: + stage 2 Thallium spect : + large LAD

Many Mismatches !! Angiography vs. FFR

FAME Study

1329 lesions in the FFR-guided arm

Angiographic Diameter Stenosis

Mismatch Disease in the Cath Lab

1066 Non-LM lesions

diameter stenosis (%)

AMC data

Validation of Angiography vs. non-invasive stress test

Only Evidences

In patients with normal myocardial perfusion scan (negative non-invasive stress tests) means just excellent prognosis. (0.6%/year, Cardiac Death and MI), even in the presence of angiographically proven CAD.

> Shaw LJ, J Nucl Cardiol 2004;11:171-85, Prognostic value of gated myocardial perfusion SPECT. Very large meta-analysis. (n=39,173 patients)

Validation of FFR vs. non-invasive stress test

Clear!

First Validation

with Non-invasive Stress Test Results (n=45 patients, intravenous adenosine infusion)

FFR <0.75 is well matched with positive stress test (TMT and Thallium SPECT).

CardioVascular Research Foundation

Pijls NHJ, NEJM 1996;334:1703-8

ASAN Medical Cent

Best Cut-off Value of FFR

Author	Number	Stress Test	BCV	Accuracy
Pijls et al.	60	X-ECG	0.74	97
			0 = 0	

Cut-off value of 0.72 - 0.78 is extremely reproducible and very solid.

DeBruyne et al.	57	MIBI-SPECT post-MI	0.78	85
Samady et al.	48	MIBI-SPECT post-MI	0.78	85
Ahn JM et al.(2011)	151	SPECT	0.77	89

Validation and Threshold of Ischemia

FFR < 0.80 is a good surrogate for clinical ischemia.

Treat or Not Treat Operator's discretion

Validation and Threshold of Ischemia

FFR > 0.80 is a perfect surrogate for absence of ischemia.

Negative FFR Never Lies 100% Specificity

Treat or Not Treat ?

Angiographic DS(%) : 85% IVUS MLA : 2.8 mm²

FFR : 0.84 Treadmill test : Negative Thallium spect : Normal Stress Echo : Normal

Just Defer !

Angiographic DS(%) : 85% IVUS MLA : 2.8 mm²

FFR : 0.84 Treadmill test : Negative Thallium spect : Normal Stress Echo : Normal

Negative FFR : 0.84 Means absence of clinical ischemia

The ESC guidelines classify FFR-guided treatment as "Class I, with level of evidence A."

Treat or Not Treat Evidence Based Medicine

Negative FFR, matched negative non-invasive stress tests, means just excellent prognosis. (0.6%/year, Cardiac Death and MI), even in the presence of angiographically proven CAD.

Shaw LJ, J Nucl Cardiol 2004;11:171-85, Prognostic value of gated myocardial perfusion SPECT. Very large meta-analysis. (n=39,173 patients)

ASAN Medical Center

Conflict Concept of

FFR vs. Vulnerable Plaque and Acute Coronary Syndrome

Akiko is Worrying About the Vulnerable Plaque Before and even After Event...

However,

Focal Treatment for the Vulnerable Plaque (before event, and no evidence of clinical ischemia) is Not Validated !!

VH-TCFA in ACS and Stable Angina

3-Vessel VH-IVUS Study (n=213 pts)

After Rupture In AMI and Stable Angina

3-Vessel IVUS Study (n=235 pts)

Acute coronary syndrome is a systemic disease, not a focal process. Vulnerability is usually widespread, not focal. It is the patient that is vulnerable, not the plaque !!

Vulnerable Plaque is Good Target for Medical Intervention

PROVE-IT TIMI-22

Currently, no studies demonstrated improved outcomes following focal intervention of "vulnerable plaque" except medical treatment.

Concern is,

Does FFR Work for Culprit Lesion Before and After Rupture ?

Pathologic Spectrum of Vulnerable Plaque

CardioVascular Research Foundation

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Vulnerable Plaque Morphology

(especially, rupture and thrombus) after event would be just one of the local characteristics to determine the FFR, if there was not serious myocardial damage.

Vulnerable Plaque Simulation

Plaque rupture Thrombus, surface roughness

Steady-state 3D Simulation under Hyperemic Condition

Different Surface Roughness

Presence of Plaque Rupture

Rupture and Roughness

Summary,

FFR have already reflected the plaque vulnerability such as rupture and thrombus burden on the lesion.

FFR represents integrated summation of total morphology and physiologic significance.

M/74, Multiple stenosis on Coronary CT, Asymptomatic Hypertension, DM, Hyperlipidemia, Ex-smoker,

IVUS (LAD pullback)

LAD

Frame Statistics Plaque Burden: 71.3%

FI : 41.4% FF: 20.0% NC: 23.0% DC: 15.6%

M/74, Multiple stenosis on Coronary CT, Asymptomatic Hypertension, DM, Hyperlipidemia, Ex-smoker,

What would you do?

(intravenous adenosine, 240 µg/kg/min)

Thallium Spect ; Normal Perfusion

Treat or Not treat

74/M, Asymptomatic, Ruptured Plaque, pLAD

Visual Estimation: 60% IVUS MLA : 3.2mm² Large PB (72%) Large necrotic core, FFR 0.89 Thallium scan : Normal

Conservative Strategy : Better !

CAG and Revascularization in selected patients after stress tests

The five-year data are consistent with earlier data reported from the ICTUS trial, which showed **no benefits of early invasive management** after one and three years of follow-up (de Winter et al, NEJM 2005; Hirsch et al, Lancet 2007,Neth Heart J. 2010)

FRISC II (Lancet 1999;354:708)
TACTICS, TIMI-18 (NEJM 2001;344:1879)

Early Invasive Treatment for ACS (after Event),

Validated in the Setting of Hemodynamic Instability, Electrical Instability, Persistent Symptoms, Persistent EKG Changes, Elevated Troponin T

Should be Positive FFR No Doubt !

My Thought is,

If FFR is negative(>0.80), patient has no clinical ischemia, just deferral would be OK even after stabilized ACS with negative FFR (exactly same with selective invasive strategy).

FFR is constantly well matched with patient's symptoms and non-invasive stress tests.

Although we need more data about the natural fate of ruptured plaque (FFR>0.80), we know that majority of plaque disruption is silent.

My Thought,

In Any Lesions with Negative FFR (>0.80), Just Defer !

CardioVascular Research Foundation

Concern is,

Deferral, Is It Really Safe?

3.3 % / 5 years = 0.6 % / year

FAME Study 2 year FU Outcomes of Deferred Lesion

FFR-guided group: 509 patients (1329 stenoses)

Event Rate of Deferred Lesion 0.2% MI, 3.2% Repeat Revascularization.

<u>**1** d/t a deferred lesion (0.2%)</u> 8 stent related or due to a new lesion (1.6%) **16 d/t a deferred lesion (3.2%)** 37 d/t in-stent restenosis or a new lesion (7.2%)

Long Term Prognosis of Deferred Proximal LAD

100

5 years Event Rate 5.3% Mortality, 0.4% MI, 2.0% Repeat Revascularization.

No at risk						
Aalst	466	410	341	262	173	109
Rotterdam	1868	1839	1803	1772	1725	1675

JACC: Cardiovascular Interventions 2011;4:1175-82

Meta-Analysis

FFR vs. Angio-Guided PCI
 Outcomes Of Deferred PCI

Non-LM Epicardial Artery
LM Coronary Artery

Park SJ, Ahn JM et al. Unpublished data

Meta-Analysis (1)

1. FFR vs. Angio-Guided PCI

FFR vs. Angio-Guided PCI (6 Studies, 2584 patients)

Year	Authors	Pt N.	FFR Cutoff	Study Design
2005	Wongpraparute et al.	137	0.75	Retrospective Observational
2005	Legalery et al.	407	0.80	Retrospective Observational
2008	Koo et al.	220	0.75	Retrospective Observational
2010	Pijls et al.	1005	0.80	Prospective Randomized
2011	Angkananard et al.	98	0.75	Retrospective Observational
2012	Puymirat et al.	717	0.80	Retrospective Observational

		Deat	h		
Study	OF	R (95% CI)	P Value	OR (95%	CI)
Wongpraparute et al.	0.20	(0.04-1.03)	0.055		
Legalery et al.	1.43	(0.28-7.33)	0.671		•
Pijls et al.	0.66	(0.32-1.35)	0.252	-	-
Angkananard et al.	2.09	(0.36-11.97)	0.408		
Puymirat et al.	0.71	(0.36-1.38)	0.312	-	-
	0.71	(0.46-1.10)	0.12		
				0.1	1 10
				Favors FFR	Favors CAG

Nonfatal MI

Т	V	R
_		

Study	OF	R (95% CI)	P Value	OR	(95% CI)	
Wongpraparute et al	. 0.62	(0.22-1.76)	0.37	-		
Legalery et al.	0.22	(0.06-0.80)	0.02			
Koo et al.	1.26	(0.33-4.83)	0.73			
Pijls et al.	0.82	(0.55-1.2)	0.30			
Angkananard et al.	0.73	(0.16-3.47)	0.70			—
Puymirat et al.	0.52	(0.32-0.86)	0.01		-	
	0.67	(0.51-0.88)	<0.01		\blacklozenge	
				0.1	1	10
				Favors F	FR I	avors CAG

MACE

Study	O	R (95% CI)	P Value
Wongpraparute et al	. 0.26	(0.11-0.58)	0.001
Legalery et al.	0.31	(0.11-0.88)	0.03
Koo et al.	1.26	(0.33-4.83)	0.73
Pijls et al.	0.76	(0.55-1.03)	0.08
Angkananard et al.	0.85	(0.28-2.57)	0.78
Puymirat et al.	0.45	(0.29-0.69)	<0.01
	0.59	(0.47-0.74)	<0.01

ASAN Medical Center

Number of Stents Used

FFR Guided PCI is Better !

0.8 Stent

 \checkmark

Stent Used

Park SJ, Ahn JM et al. Unpublished data

<0.01

CardioVascular Research Foundation

Meta-Analysis (2)

1. FFR vs. Angio-Guided PCI

2. Outcomes Of Deferred PCI

Non-LM Epicardial Artery
LM Coronary Artery

Clinical Outcomes After Deferral of Revascularization (32 Studies, 3251 patients)

Year	Authors	N. Of Pts	LM	Title
1998	Bech et al.	100	Ν	Long-term follow up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of
2001	Bech et al.	24	Y	Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease
2002	Chamuleau et al.	92	Ν	Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate
2004	Lopez-Palop et al.	41	Ν	Utility of the fractional flow reserve in the evaluation of angiographically moderate in-stent restenosis
2004	Reczuch et al	26	Ν	Fractional flow reserve assessment to determine the indications for myocardial revascularisation in patients with boderline stenosis
2004	Dias et al.	21	Ν	Long term outcome of conservatively treated patients with borderline coronary lesions - the role of the fractional flow reserve
2005	Legutko et al.	20	Y	Measurement of fractional flow reserve in patients with multi-vessel coronary artery disease and borderline lesions prevents
2005	Reczuch et al.	41	Ν	Value of fractional flow reserve in the management of patients with moderate coronary stenosis
2005	Kobori et al.	113	Ν	Usefulness of fractional flow reserve in determining the indication of target lesion revascularization
2005	Mates et al.	85	Ν	Long-term follow-up after deferral of coronary intervention based on myocardial fractional flow reserve measurement
2005	Sueman et al.	8	Y	Coronary pressure measurement to determine treatment strategy for equivocal left main coronary artery lesions
2005	Beger et al.	127	Ν	Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel
2006	Lindstaedt et al.	24	Y	Clinical outcome in patients with intermediate or equivocal left main coronary artery disease after deferral of surgical revascularization
2006	Potvin et al.	201	Ν	Usefulness of fractional flow reserve measurement to defer revascularization in patients with stable or unstable angina pectoris
2006	Fischer et al.	111	Ν	Outcome of patients with acute coronary syndromes and moderate coronary lesions undergoing deferral of revascularization based
2006	Verna et al.	54	Ν	Performing versus deferring coronary angioplasty based on functional evaluation of vessel stenosis by pressure measurements
2006	Jimenez-navarro et al	12	Ν	Usefulness of fractional flow reserve in multivessel coronary artery disease with intermediate lesions
2007	Rieber et al	56	Ν	Five-year follow-up in patients after therapy stratification based on intracoronary pressure measurement
2007	Pijls et al.	91	Ν	Percutaneous coronary intervention of functionally nonsignificant stenosis 5-year follow-up of the DEFER study
2007	Chamuleau et al.	107	Ν	Long-term prognostic value of CFVR and FFR versus perfusion scintigraphy in patients with multivessel disease
2008	Meuwissen et al.	29	Ν	The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous
2008	Koo et al.	63	Ν	Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve
2008	Dominguez-Franco	136	Ν	Long-term prognosis in diabetic patients in whom revasculariozation is deferred following frational flow reserve assessment
2009	Courtis et al.	82	Y	Usefulness of coronary fractional flow reserve measurements in guiding clinical decisions in intermediate or equivocal left main
2009	Hamilos et al.	138	Y	Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically euivocal left main coronary
2010	Esen et al.	162	Ν	The prognostic value of combined fractional flow reserve and TIMI frame count measurement in patients with stable angina pectoris
2010	Pijls et al.	513	Ν	Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery
2010	Marques et al.	70	Ν	Patients with coronary stenosis and a fractional flow reserve of >0.75 measured in daily practice at the VU university medical center
2011	Nam et al.	30	Ν	Usefulness of coronary pressure measurement for functional evaluation of drug-eluting stent restenosis
2011	Misaka et al.	29	Ν	Long-term clinical outcomes after deferral of percutaneous coronary intervention of intermediate coronary stenoses based on
2011	Muller et al.	564	Ν	Long-term follow-up after fractional flow reserve-guided treatment strategy in patients with an isolated proximal left anterior
2011	Lopez-Palop et al.	81	Ν	Results of fractional flow reserve measurement to evaluate nonculprite coronary artery stenoses in patients with acute coronary

Clinical Outcomes After Deferral of Revascularization

Non-LM Epicardial Artery (26 studies, 2955 patients)

 Outcomes
 Incidence (%/year)

 All Death
 2.2 (1.5-3.2)

 Cardiac Death
 1.2 (0.8-1.7)

 Myocardial Infarction
 1.5 (1.0-2.2)

 TVR
 4.4 (3.1-6.2)

 MACE
 5.9 (4.3-8.1)

Clinical Outcomes After Deferral of Revascularization

Left Main Coronary Artery (6 studies, 296 patients)

 Outcomes
 Incidence (%/year)

 All Death
 2.6 (1.3-5.2)

 Cardiac Death
 2.6 (1.3-5.2)

 Myocardial Infarction
 2.0 (0.7-5.1)

 TVR
 5.5 (3.3-8.8)

 MACE
 8.2 (5.5-12.1)

Summary (2)

FFR guided deferred PCI reduced the frequency of non-fatal MI, TVR, MACE and number of stents used.

Meta-analysis for clinical outcomes of deferred PCI using FFR showed that all cause mortality was 2.2% in non-LM coronary artery and 2.6% in left main disease per year. There was a tendency of lower frequency of MI, TVR and MACE compared to studies using various stents.

FFR >0.80 Just Defer !

Do You Still Concern about Defer?

Multicenter, Prospective Registry to Evaluate The Natural History of FFR-Guided Deferred Coronary Lesions

IRIS FFR DEFER Registry

Patients (N=2,000) with ≥1 Deferred Target Lesions (DS>30% by visual estimation and FFR>0.80)

