Clinical Decision Making in Patients with Left Main Disease

Alan C. Yeung, MD

Li Ka Shing Professor of Medicine
Clinical Director, Cardiovascular Institute
Chief, Division of Cardiovascular Medicine; Director, Interventional Cardiology
Stanford University School of Medicine

Conflict of Interest

- Abbott Medical Advisory Board
- Medtronic Coronary Scientific Advisory Board
- Resolute US National PI

2011 ACC/AHA PCI Guidelines

 Anatomy with a low risk of procedural complications and a high likelihood of good long-term outcome (SYNTAX score of ≤22, ostial or trunk left main CAD) , 	
AND	IIa B
 Characteristics predict significantly increased risk of adverse surgical outcomes (STS-predicted risk of operative mortality ≥5%) 	
UA/NSTEMI if not a CABG candidate	IIa B
STEMI when distal TIMI flow grade <3 and PCI can be performed more rapidly and safely than CABG	IIa C
 Anatomy low to intermediate risk of PCI procedural complications and intermediate to high likelihood of good long-term outcome (low-intermediate SYNTAX score of <33, bifurcation left main CAD), AND 	IIb B
 Characteristics predict increased surgical risk (moderate-severe COPD, disability from prior stroke, or prior cardiac surgery; STS-predicted risk of operative mortality >2%) 	
Unfavorable anatomy for PCI and good candidates for CABG	III B

Levine et al. J Am Coll Cardiol 2011

Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
- Does the patient have diabetes?
- Are the lesions heavily calcified angiographically or post-CABG?
- Are there other lesions besides LM?

Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
- Does the patient have diabetes?
- Are the lesions heavily calcified angiographically or post-CABG?
- Are there other lesions besides LM?

Visual Functional Mismatch

Visual: 80%

IVUS MLA: 6.2mm²

FFR: 0.82

Treadmill test: Negative

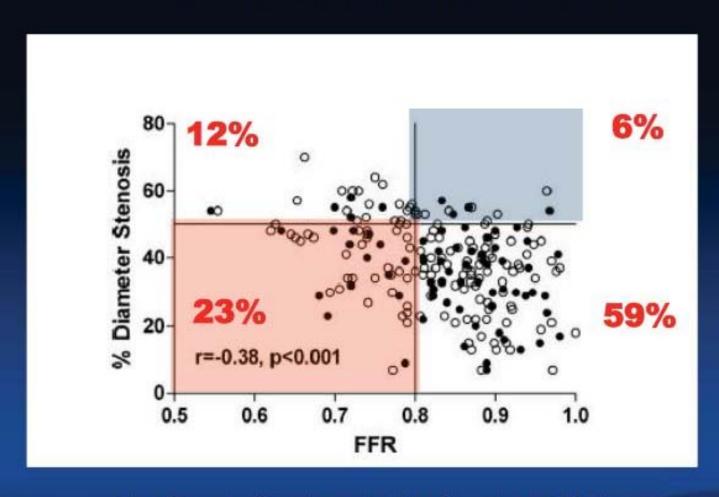
Thallium spect : Normal

Stress Echo: Negative

Reverse Mismatch

Visual Estimation: 30%

FFR: 0.70


IVUS MLA: 4.5 mm2

Treadmill test: + stage 2

Thallium spect: + large

LAD

Mismatch in intermediate LM Disease

Hamilos M, Circulation 2009; 120: 1505-1512

FFR is influenced by Many Lesion Specific Factors "Total Morphology"

- Reference vessel diameter (myocardium)
- Degree of diameter stenosis
- Lesion morphology
- Eccentricity
- Lesion length
- Plaque burden, Plaque rupture
- Surface roughness
- Viscous friction, flow separation, turbulence, and eddies

Univariable Analysis to Predict FFR < 0.8

Variables	C-OR	95%CI	p-value
MLA within LM	0.312	0.164-0.593	<0.001
Plaque burden	1.095	1.031-1.164	0.003
Lesion length	1.192	1.038-1.368	0.013
Rupture	3.273	0.953-11.243	0.060
Angiographic DS	1.049	0.993 – 1.108	0.088
Lesion location	2.081	1.070 - 4.046	0.031
Male	0.511	0.127-2.057	0.345
Age	0.965	0.917-1.016	0.172
Diabetes melitus	1.062	0.304-3.710	0.924
Hypertension	1.3	0.412-4.101	0.654
Smoker	2.701	0.816-0.8945	0.104
Hyperlipidemia	1.167	0.324-4.200	0.814
Stable presentation	0.476	0.078-2.894	0.42

UNIVERSITY OF ULSAY

(EAN) ASAN

Multivariable Analysis to Predict FFR

Independent predictors for FFR as continuous variable

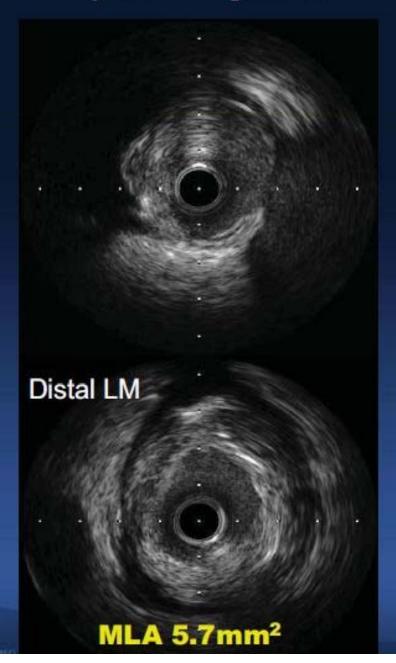
M (β=0.58, 95% CI=0.02 - 0.04, p<0.001)

Plaque rupture (β=-0.24, 95%

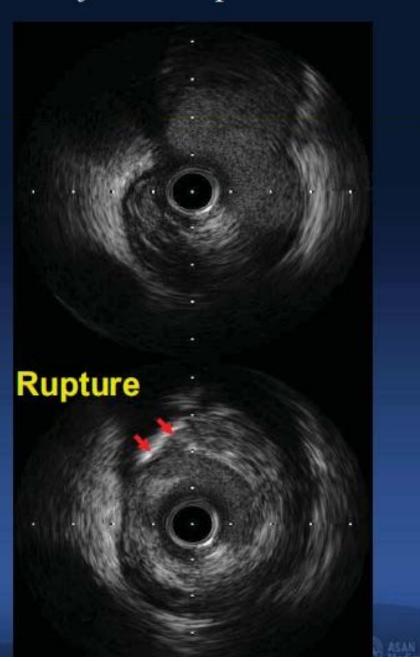
CI= -0.09-0.01, p=0.036)

Kang SJ, Park SJ et al, JACC. Cardiovascular Interventions. 2011 Nov;4(11):1168-74.

52/M, Atypical chest pain, MDCT; Diffuse, moderate stenosis at distal LM



LAD, FFR


LCX, FFR

LM from LAD pullback

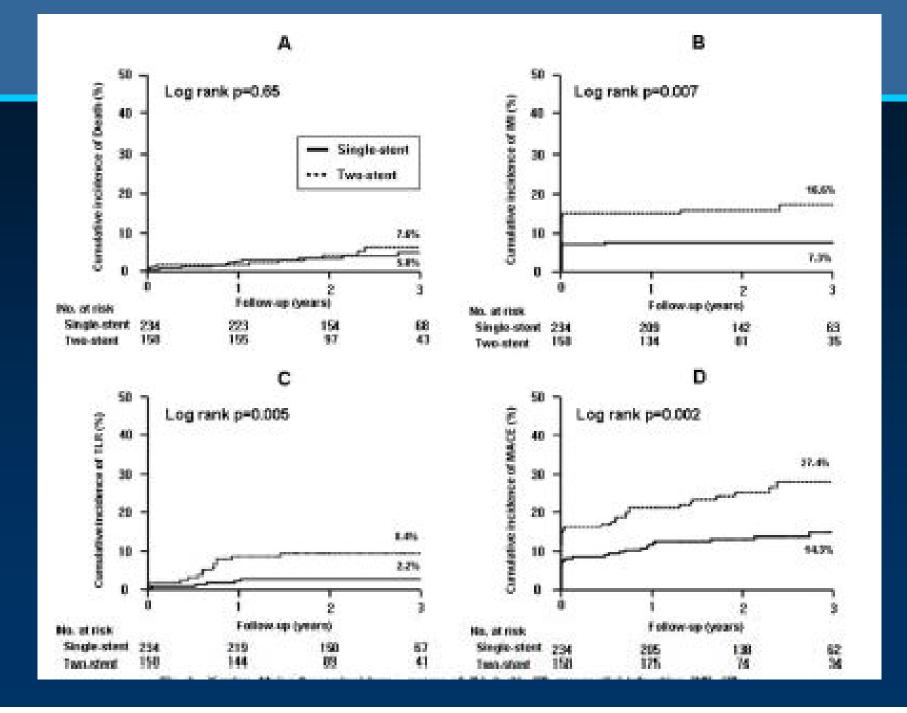
LM from LCX pullback

Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
- Does the patient have diabetes?
- Are the lesions heavily calcified angiographically or post-CABG?
- Are there other lesions besides LM?

Distal LM Bifurcation PCI

- Single Stent Cross Over
- 2 Stents Procedures


When, 1 vs. 2 stents

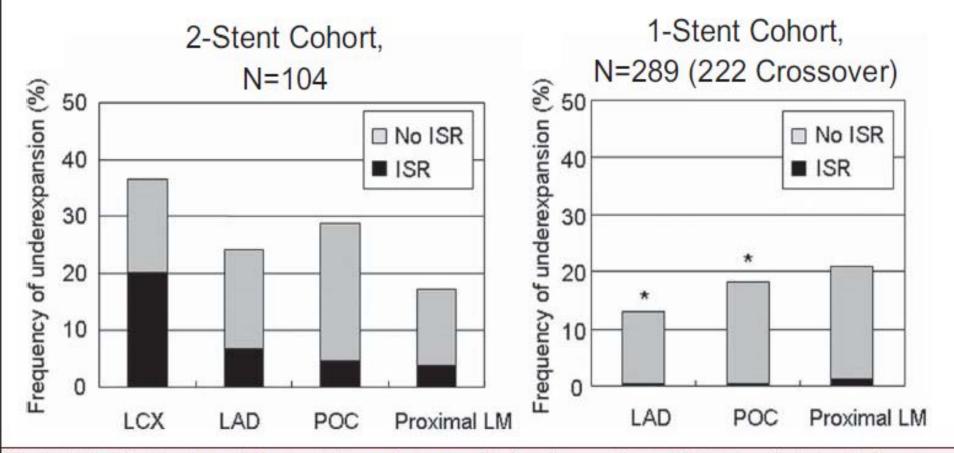
Single stent

- Normal ostial LCX with MEDINA 1.1.0. or 1.0.0.
- Small LCX with < 2.5 mm in diameter
- Diminutive LCX
- Normal or focal disease in distal LCX

Two stent

- Diseased LCX with MEDINA 1.1.1., 1.0.1., or 0.1.1
- Large LCX with ≥ 2.5 mm in diameter
- Diseased left dominant coronary system
- Concomitant diffuse disease in distal LCX

- Complex 2 stents
- Non-distal (Ostial and Shaft)
- Simple (single stent cross over)
 In LM bifurcation lesions


Single Stent Cross Over is Clearly better!

Kim WJ, et al. Catheter Cardiovasc Interv. 2011 May 1;77(6):775-82

Frequency of Stent Underexpansion 1 vs 2 Stent Techniques

2-stent: LCX stent most frequently underexpanded and results in ISR more than half of cases

1-stent: Underexpansion is less common compared with 2 stent techniques with lower ISR

The Spectrum of 2 stent Techniques

- How should you choose between:
 - T-stent, modified T-stent or TAP
 - Mini-crush (or step crush)
 - Culotte
 - V-stent
 - Y-stent (SKS-simultaneous kissing stents)

Planned 2 stent techniques for true LM distal bifurcation disease

Technique

T, modified T, TAP:

Culotte:

Mini-crush (or step crush):

V-stent:

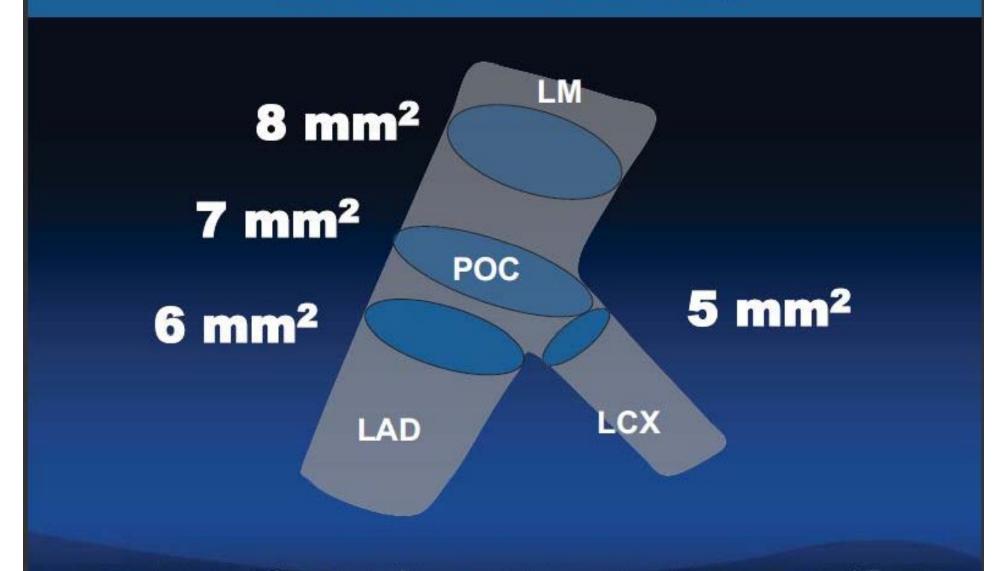
SKS:

When to choose

75-90' angled LCX

Y bif with matched LAD/LCX dia.

Y bif with LAD/LCX dia mismatch.


Medina 0,1,1 (true LMEQ ds)

Short LM, unstable pt

End with a FKB inflation with all 2-stent techniques

IVUS Stent Optimization

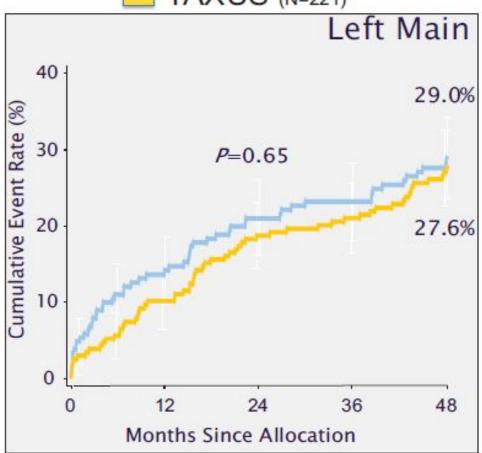
(Stent Cross-sectional Area)

Kang, Park et al. Circulation. Cardiovascular Interventions. 2011 Dec 1;4(6):562-9.

Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
- Does the patient have diabetes?
- Are the lesions heavily calcified angiographically or post-CABG?
- Are there other lesions besides LM?

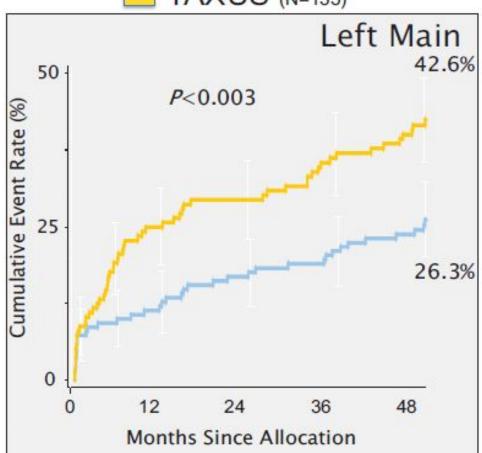
SYNTAX


LM Subgroup: 1 and 4 Year Outcomes

Endpoint	dpoint CABG (%)		Taxus (%)			P value	
	1 Year	Δ ^{1-4 Yrs}	4 Year	1 Year	Δ ^{1-4 Yrs}	4 Year	
Death	4.4	4.0	8.4	4.2	2.9	7.3	0.64
Stroke	2.7	1.3	4.0	0.3	0.9	1.2	0.02
MI	4.1	0	4.1	4.3	2.6	6.9	0.14
Revascularization	6.7	5.0	11.7	12.0	8.0	20.0	0.004
Death/stroke/MI	9.1	5.2	14.3	7.0	6.0	13.0	0.60
MACCE	13.6	8.7	22.3	15.8	9.0	26.8	0.20

MACCE at 4 Years Stratified by Baseline SYNTAX Score

Tercile SYNTAX Low to Intermediate Scores 0-32


	CABG	PCI	Pvalue
Death	11.8% >	7.5%	0.12
CVA	3.9% >	1.4%	0.11
MI	3.8% <	5.1%	0.55
Death, CVA or MI	17.1% >	13.5%	0.25
Revasc.	16.9% <	19.1%	0.57

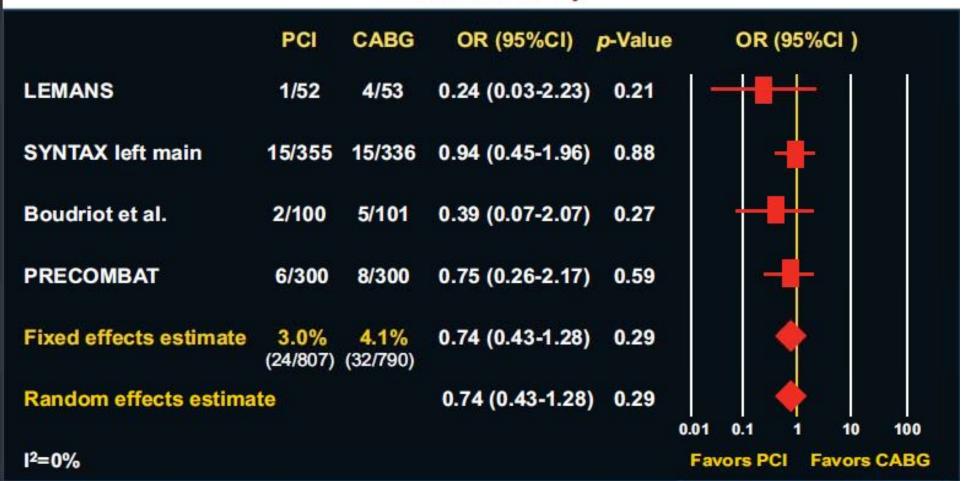
Cumulative KM Event Rate ± 1.5 SE; log-rank P value Site-reported Data; ITT population

Serruys P. TCT2011

MACCE at 4 Years Stratified by Baseline SYNTAX Score Tercile SYNTAX High Score ≥33

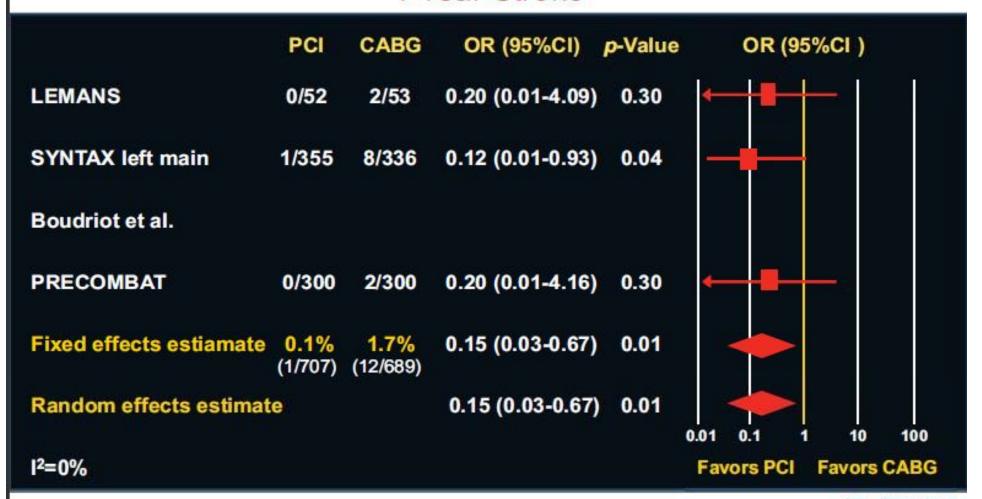
	CABG	PCI	P value
Death	10.5%	< 17.9%	0.06
CVA	4.9% >	1.6%	0.14
МІ	6.1%	< 10.9%	0.18
Death, CVA or MI	18.5%	< 23.1%	0.33
Revasc.	11.8%	< 31.3%	<0.001

Cumulative KM Event Rate ± 1.5 SE; log-rank P value Site-reported Data; ITT population


Serruys P. TCT2011

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs, 1,611 Patients

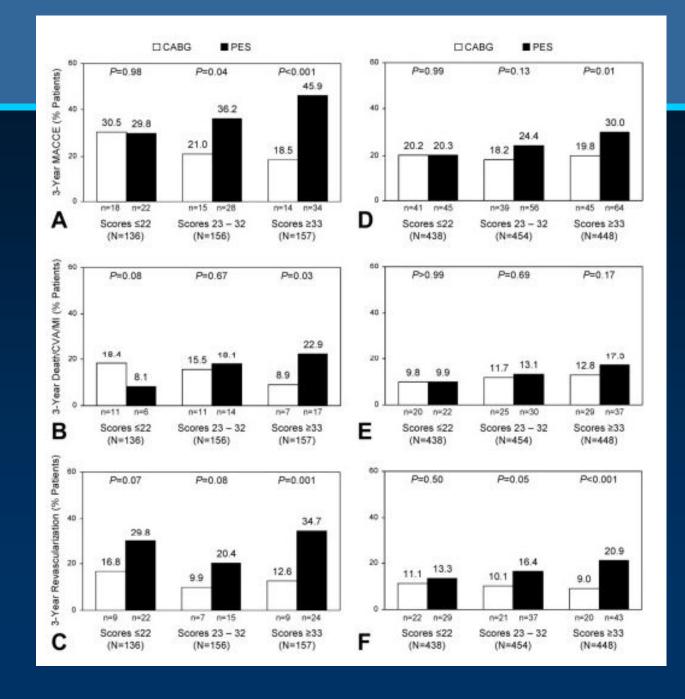
Trial	LEMANS	SYNTAX LM	Boudriot et al.	PRECOMBAT
Year	2008	2009	2010	2011
N total	105	705	201	600
Age, mean years	61	65	68	62
Male	67%	74%	75%	77%
Diabetes	18%	25%	36%	32%
Distal LM involved	58%	61%	71%	65%
+0/1/2/3 VD, %	0/9/23/68	13/20/31/36	29/31/27/14	10/17/32/41
Syntax Score, mean	25	30	24	25
Log Euroscore, mean	3.4	3.9	2.5	2.7
LIMA-LAD	81%	97%	99%	94%


PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs, 1,611 Patients

1 Year Mortality

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs, 1,611 Patients

1 Year Stroke



PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs, 1,611 Patients

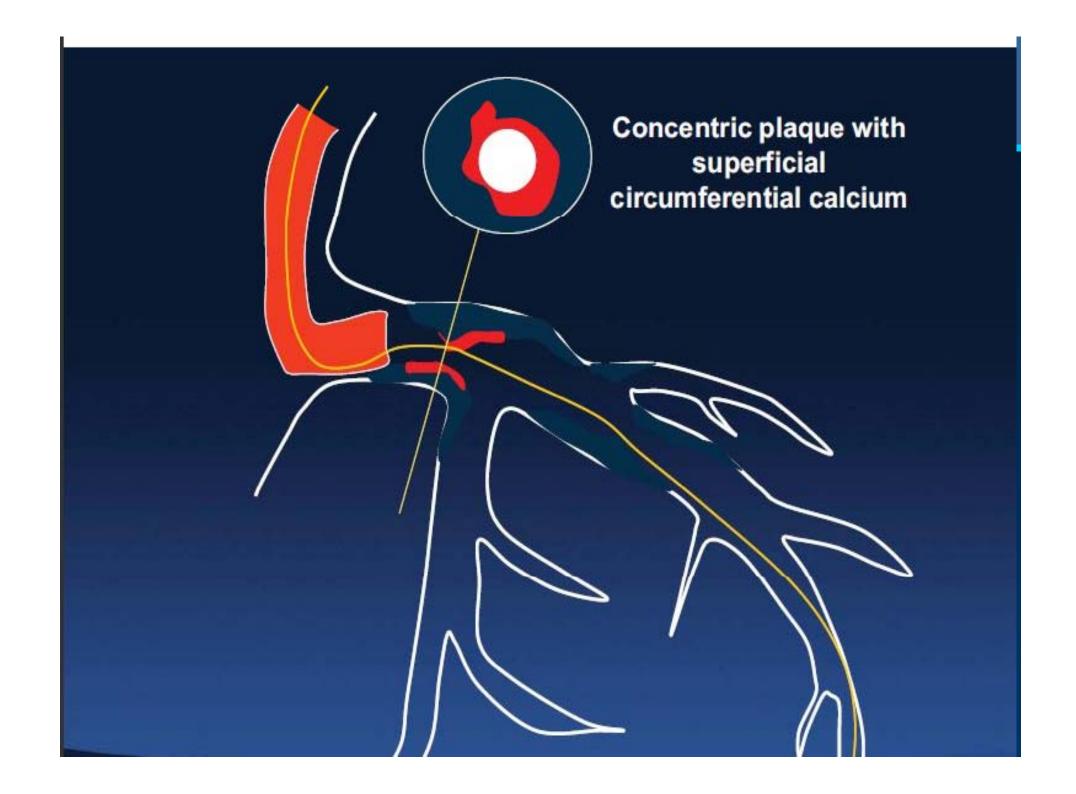
1 Year Repeat Revascularization

Three years SYNTAX: Diabetes

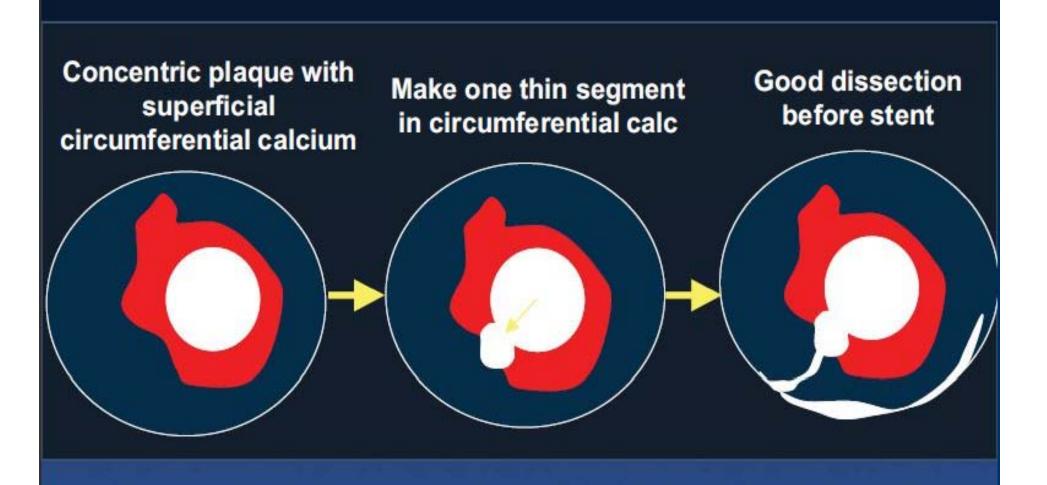
Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
- Does the patient have diabetes?
- Are the lesions heavily calcified angiographically or post-CABG?
- Are there other lesions besides LM?

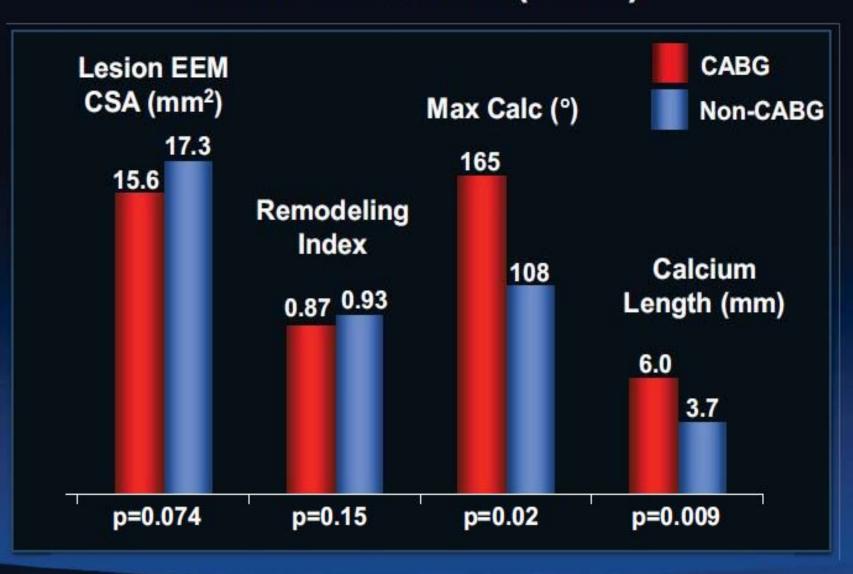
Diagnostic Cath


Calcified 90% Bifurcating Left Main LAD and Circ RCA Normal

Calcified LM stenoses


- Prevents delivery of stents
- Leads to underexpansion of stents
- Often results in plaque shift, jailing of SB

Therefore,

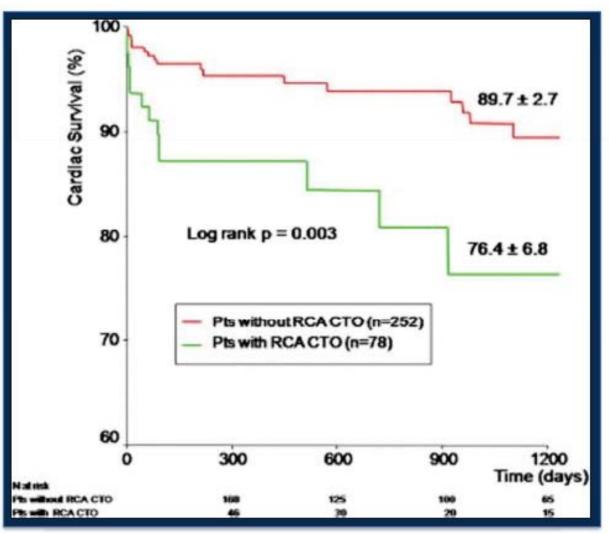

- Scoring/cutting balloons are first choices
- Rotational atherectomy is difficult if both LAD and Cx need to be treated
- Distal embolization can be a problem
- Often calcified LM is associated with diffuse disease in LAD and Cx

Lesion Modification, Not Calcium Removal

Difference Between CABG vs non-CABG LMCA Lesions (n=86)

Quantification and Impact of Untreated CAD After PCI: The Residual SYNTAX Score

New scoring strategy analyzed in 2,686 angiograms from pts with moderate- and high-risk ACS; pts stratified into Syntax tertiles.


- 30-day, 1-year rates of ischemic events were higher in the incomplete vs. complete revascularization group
- In the baseline intermediate- and high-risk tertiles, incomplete revascularization with a residual Syntax score > 8 is associated with increased mortality (P = 0.001)
- Degree of incomplete revascularization varied greatly despite strong correlation between baseline and residual scores

Implications: Residual Syntax score is useful to quantify and risk-stratify residual stenosis after PCI.

Survival Following LM PCI Impact of Right Coronary Artery Total Occlusion

N=330 (24% RCA CTO)

Predictors of 3-Year Mortality: RCA CTO, EuroSCORE

Migliorini, A. et al. J Am Coll Cardiol 2011;58:125-130

Clinical Decision Making

- Does the LM lesion needs to be treated? If so, which lesion (LM, LAD, Cx)?
 - Make sure Rx is really needed esp if high risk
- Can the LM lesion be treated with one stent (i.e. cross over technique)?
 - If only need cross over is needed, procedure is simplier and results are excellent
- Does the patient have diabetes?
 - Likelihood of higher ISR rates esp in IDDM, though NIDDM may not be much higher risk
- Are the lesions heavily calcified angiographically or post-CABG?
 - Procedure is more complicated with likely poorer outcome
- Are there other lesions besides LM?
 - May be CABG is better